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Abstract--This paper describes machine vision algorithms
that enable precision guidance and hazard avoidance during
small body exploration through onboard visual feature
tracking and landmark recognition. These algorithms
provide estimates of spacecraft relative motion and absolute
position used to guide the spacecraft during autonomous
landing and exploration. They also enable hazard avoidance
by providing estimates of 3-D surface topography through
processing of monocular image streams. This form of
onboard autonomy is a critical enabling technology for
multiple future missions including Comet Nucleus Sample
Return, Large Asteroid Sample Return, Titan Organics
Explorer and Europa Lander and Mars lander missions.
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1. INTRODUCTION

Autonomous spacecraft systems have the potential to reduce
costs while enhancing existing systems and enabling new
capabilities for future deep space missions. For example,
exploration of comets, asteroids and moons of outer planets
will benefit tremendously from on-board systems that
autonomously and accurately determine spacecraft position
relative to a proximal small body. With such a system,
complex trajectories can be followed safely and accurately
in the dynamic small body environment. This capability will
enable precision guidance to scientifically interesting
targets, hazard avoidance, autonomous landing, and sample
return with little or no human interaction.

Design of an autonomous navigation system should balance
positional accuracy against the typical constraints in
spacecraft design of power, mass, volume, and complexity.
Cameras are proven spacecraft sensors; most spacecraft
carry cameras for scientific imaging or optical navigation.
The low cost, low power, low mass, and proven flight
record of cameras also make them an attractive sensing
solution for autonomous navigation. Camera images can be
processed by the flight computer to estimate spacecraft

motion, body absolute position and 3-D surface topography.
By integrating spacecraft cameras with on-board processing,
an autonomous navigation sensing system can be realized
with little or no addition to typical spacecraft systems.

We are developing machine vision algorithms that take as
input streams of images from a single nadir pointing camera
and output estimates of spacecraft relative motion,
spacecraft body absolute position and imaged surface
topography. These estimates can be passed directly to the
spacecraft guidance, navigation, and control system for
following of safe and precise trajectories. Motion is
computed from feature tracking followed by two-frame
image-based motion estimation. Given motion estimates,
our algorithms reconstruct the 3-D topography of the
imaged terrain using efficient motion stereo techniques.
This topography can be used to detect hazards; it can also be
used to build a 3-D model of the imaged surface. Given a 3-
D model, our algorithms determine the position of the
spacecraft in a body relative frame by matching landmarks
extracted from an image stream to those stored in the 3-D
model.

2. PROBLEM FORMULATION

During algorithm development, we have placed an emphasis
on robustness to noise and outliers, generality in terms of
image surface characteristics and application domain, and
algorithm efficiency. Before describing our algorithms, we
would like to expand on the problems we are investigating
and relate them to the state of the art in machine vision and
autonomous spacecraft navigation.

Visual Position Estimation

Current missions require optical navigation for orbit
determination and instrument pointing during close fly-bys
of small bodies and moons of the outer planets. This is
implemented by ground-based image processing to extract
centroids of small reference targets like asteroids and
moons.  For the NEAR mission, orbit determination around
asteroid Eros will use manual designation of known
landmark features on the surface of the asteroid [8] Limited
automation was introduced in the New Millennium DS-1



mission by implementing onboard centroiding of reference
asteroids for autonomous navigation in small body fly-bys
[9]. Proposed missions to explore comets and asteroids will
not be able to rely on such techniques, because safe, precise
navigation will require accurate knowledge of complex
surface topography and because the round-trip light time
will not allow this to be done on the ground.

Although some degree of autonomous, onboard position
estimation capability has been demonstrated, the feature
tracking and landmark recognition capabilities required to
enable safe small body exploration do not exist. One method
for visual position estimation relies on tracking image
features through a sequence of images.  Image features are
image pixels that have a high probability of being matched
between two images taken of the small body surface from
similar, but not necessarily the same, camera locations. By
detecting and then tracking image features through a
sequence of images, the relative motion of the spacecraft
can be determined between frames [5]. This capability is
useful for maintaining continuous estimates of spacecraft
position, but since it does not give absolute position with
respect to a body centered coordinate system, its usefulness
is limited.

Another method for visual position estimation is landmark
recognition. A landmark is a 3-D position on the surface of
a body whose appearance is stable across moderate changes
in viewing direction and illumination conditions (e.g.,
craters on an asteroid [6]). Landmarks are detected during 3-
D modeling of the body and stored in a database. During
landmark recognition, landmarks detected in an image are
matched to landmarks in the database.  Since the 3-D
position of landmarks are known, recognizing a few
landmarks in a single image is sufficient for determining the
absolute position of the spacecraft relative to the body
centered coordinate system. Landmark recognition is more
time consuming than feature tracking, however, these two
methods of position estimation are complimentary. By
combining the continuous updates of relative position from
feature tracking with the occasional updates of absolute
position from landmark recognition, continuous estimates of
spacecraft position in absolute body centered coordinates
can be obtained.

Motion Stereo Vision

Stereo imaging has been studied extensively, and well-
known techniques for reconstructing dense surfaces from
stereo images exist [12]. Traditional stereo imaging (i.e.,
two or more rigidly attached cameras) cannot be applied
directly to the small body exploration problem, except near
to the surface, because at high altitude the camera baseline
required for structure recovery is too large for typical
spacecraft structures. However, using spacecraft motion
estimates and stereo vision techniques, it is possible to
generate dense topographic maps of a small body surface
from monocular image streams. This technique, called
motion stereo, has the advantage of being applicable at any

altitude above the small body surface. However, it requires a
more complicated algorithm than typical binocular stereo
because the baseline between images is variable and must be
computed from navigation sensor inputs. Motion stereo is
an important component of autonomous small body
exploration because it provides the 3-D structure needed for
hazard detection and landmark recognition.
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 Figure 1  Algorithm block diagram.

Hazard Avoidance

Hazard detection is the process where scene topography is
analyzed to detect landing sites that are unsafe for the
spacecraft. Hazards can be characterized as high-level (e.g.,
rocks, cliffs) or low-level (e.g., local surface slope and
roughness), High-level hazards are detected by segmenting
hazard from the background while low-level hazards are
computed at each pixel in an image. High-level hazard
detection requires the definition of models for objects that
promote efficient hazard detection and accurate localization
of hazards. The challenge of low-level hazard detection is
deciding what combinations of low-level hazards constitute
a hazard for the spacecraft.



Hazard avoidance combines path planning to avoid detected
hazards with constraints on fuel and spacecraft control
authority to generate trajectories that guide the spacecraft to
a safe landing site. Currently we are focussing on the hazard
detection problem.  In the future we plan to use our
algorithms as a front end to a complete hazard detection and
avoidance system for safe and autonomous small body
landing.

3. ALGORITHMS

As shown in Figure 1 , we are developing a complete set of
algorithms for passive image-based small body navigation
and hazard detection. Currently we have algorithms for
feature-based relative motion estimation, motion stereo
vision, surface landmark-based absolute position estimation,
and terrain map hazard assessment. Below we describe these
algorithms and present results generated from images
acquired of a comet analog in a controlled laboratory
setting.

Motion Estimation

We define spacecraft motion as the 6 degree-of-freedom
(DoF) change in position and attitude of the spacecraft. In
the case of image-based motion estimation, the motion
computed is the change in position and attitude between
image captures. Image-based motion estimation has a long
history in the machine vision literature, and the algorithm
we use falls in the category of two-frame feature-based
motion estimation.  Our algorithm works by tracking
multiple image features between a pair of images from
which the spacecraft motion between the images is
computed. Figure 2  describes pictorially the processes that
occur during motion estimation. Below we give a brief
overview of our motion estimation algorithm because it is a
basis for current work.  For more details, please see our
previous work [5].

The first step in two-frame motion estimation is the
extraction of features from the first image. Features are
pixel locations and the surrounding image intensity
neighborhood (call this a feature window) that can be
tracked well across multiple images that may under go
arbitrary, but small, changes in illumination or viewing
direction. A qualitative definition of a good feature is a
feature window that has strong texture variations in all
directions. Since the motion between images is small, the
change in position of features from image to image will be
small. After feature detection, the features selected in the
first frame are located in the second frame; this procedure is
called feature tracking.

Feature detection and tracking have been studied
extensively and multiple proven algorithms exist. Since
processing speed is an important design constraint for our
application, we selected the efficient feature detection

algorithm of Benedetti and Perona [1] and the standard Shi-
Tomasi feature tracker [10].

The motion between two camera views is described by a
rigid transformation (R, T) where R encodes the rotation
between views and T encodes the translation between views.
Once features are tracked between images, the motion of the
camera can be estimated by solving for the motion
parameters that, when applied to the features in the first
image, bring them close to the corresponding features in the
second image

Estimate motion

Detect features Track features

 Figure 2  Feature-based motion estimation.

A fundamental shortcoming of all image-based motion
estimation algorithms is the inability to solve for the
magnitude of translational motion. Intuitively the reason for
this is that the algorithms cannot differentiate between a
very large object that is far from the camera or a small
object that is close to the camera. Consequently, the output
of motion estimation is a 5 DoF motion composed of a unit
vector describing the direction of heading and the rotation
matrix R between views. As described in [5] laser altimetry
can be combined with 5 DoF motion estimation to compute
the complete 6 DoF motion of the spacecraft. Other
alternatives are to use on-board inertial measurement
sensors or radiometric tracking from earth.



In our algorithm, motion estimation is a two-stage process.
First an initial estimate of the motion is computed using a
linear algorithm [7]. This algorithm is applied multiple
times using different sets of features to eliminate feature
track outliers and determine a robust Least Median Squares
estimate of motion. The result of this algorithm is then used
as input to a more accurate nonlinear algorithm that solves
for the motion parameters directly. Since an good initial
estimate is needed to initialize any nonlinear feature-based
motion estimation algorithm, this two-stage approach is
common [11]. Output from the nonlinear algorithm is the
estimate of the five motion parameters and their covariance.
This is then combined with laser altimetry or inertial
measurements to create a 6 DoF motion estimate. For the
lab imagery, the magnitude of translation is acquired from
reading the translation stage used to move the camera during
image stream acquisition.

It should be noted that all of our algorithms use a CAHVOR
camera model [3] to intrinsically calibrate the camera. This
camera model removes imaging nonlinearities due to radial
lens distortion and optical center offset so that they do not
effect motion estimation or structure recovery.

Once motion is computed, the 3-D position of the tracked
features can also be computed using triangulation and the
motion between the images. Below  we show how the 3-D
position of many tracked features can be used to reconstruct
the surface topography, which can subsequently be used for
hazard detection.

On tests conducted using real imagery we achieved a motion
estimation rate of 4 Hz (on a 176 MHz R10000 processor)
and motion estimation errors of less than 1% of the distance
traveled. Using Monte Carlo simulation, we have shown
that using only image-based motion estimation, it is possible
to obtain a 3.6 m landing error ellipse when starting from a
known position at an altitude of 1000 m.

Motion Stereo

Motion stereo is used to generate dense topographic maps of
the imaged scene for use in absolute position estimation and
hazard detection. First image-based motion estimation as
described above is applied to determine the spacecraft
motion between two images. To obtain a large baseline
(distance between image acquisitions), features may be
tracked through multiple images.  When the desired baseline
is reached, the motion is computed between the images
based on the feature tracks using the algorithm described
above.

If pixel matches between images are guaranteed to lie along
the same scan line then a 1-D search, instead of a 2-D
search, can be used to find pixel matches and a more
efficient stereo matching algorithm can be realized.
However, if the sensor rotates or translates out of the image
plane between images then pixel matches will not lie along

the scan lines of the images. In this case, image rectification
is used to enforce the scan line alignment.

Image rectification creates two new images where pixel
matches are guaranteed to lie along scan lines by creating
two perfect virtual cameras that “view” the acquired images.
The virtual cameras are created so that they have the same
image plane, and they are oriented and positioned in the
image plane so that corresponding rows in the virtual
cameras define the same plane in space. The image plane
and baseline between virtual cameras are chosen so that the
rectified images are as close to the original images as
possible. Projecting the original image pixels into the
corresponding virtual camera then creates each rectified
image.

To reduce the effect of intensity biases in pixel matching
due to changes in illumination, a Laplacian filter (modeled
as a difference of gaussians) is applied to the rectified
images.  This band pass filter eliminates the DC intensity
and the noisy high frequency components of the images.

Next, matches at every pixel with sufficient texture are
found along scan lines of the rectified and filtered images
using a sum of absolute differences stereo matching
algorithm [12]. This algorithm is highly optimized and has
been applied to many mobile robot navigation problems.
Once the pixel matches are computed, the depth to each
pixel is computing using the motion between images and
triangulation.

During small body exploration, the spacecraft will make
motions that are beyond the scope of our binocular stereo
vision algorithms (e.g., large rotations, translations out of
the image plane). However with a few modifications, we
were able to make our binocular stereo visions algorithms,
work for motion stereo as well. The first change was to
modify the rectification algorithm so that the rectified
images were cropped to contain only the part of the image
that contains data projected from the original images. With
this change it was then necessary to change the stereo
matching code so that it could search in both directions
along scan lines for the best matching pixel. Although
seemingly minor modifications, these changes allowed us to
increase the amount of surface reconstructed in each image
without increasing the running times of the algorithms.

Figure 3  shows the stages in the motion stereo algorithm
for a wide baseline data set taken of a comet analog.  The
motion between the images is 10° about the vertical axis and
a translation of 25 cm. Using this motion, the images are
rectified, cropped and filtered as described above.  Finally,
stereo matching is performed and a dense depth map is
constructed.  The entire process of rectification through
stereo matching took 4.5 seconds for 512x512 images on a
300Mhz Sparc Ultra 10 processor. The depth map displayed
is color coded according to the visible spectrum.  Red data
is the closest to the sensor while magenta data is the farthest
from the sensor. As the figure shows, very detailed surface
topography can be generated using motion stereo and the



compute time is small enough to make motion stereo
feasible during small body exploration.
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 Figure 3  Motion stereo procedure.

Position Estimation

Image-based absolute position estimation is the process by
which the 6 DoF absolute position of the spacecraft relative
to a proximal small body coordinate system is determined
from camera imagery.  Absolute position estimation has two
applications.  Should the spacecraft lose all position and
attitude information due to an anomaly, it can be used to
realign the spacecraft with the small body coordinate

system.  The other more common application is to use
absolute position estimation to null out dead reckoning
errors from motion estimation during small body
exploration.

We have taken the landmark matching approach to image-
based absolute position estimation. First, a 3-D database of
the small body landmarks is constructed from orbital
imagery either automatically or on the ground with human
intervention.  During exploration, imagery is acquired and
landmarks are extracted automatically. These landmarks are
then matched to the 3-D landmark database and the position
of the spacecraft in the small body frame is computed.

For landmarks to be effective, they must exhibit some
invariance to illumination conditions and viewing direction.
The general appearance of asteroids is well known from the
multiple images taken during asteroid fly-bys; asteroids are
marked with craters.   In another paper [6], we show that
craters can be used as effective landmarks for asteroid
absolute position estimation.

However, in the case of comets, we have no high-resolution
imagery of the comet surface, so establishing a strong
geometric model for landmarks (e.g., craters are circular) is
not possible. For comets, a more general landmark model
must be used. There are three factors that indicate that
surface shape can be used directly to describe landmarks for
comet absolute position estimation.  First, comet surfaces
are expected to be rough on all scales, which makes surface
shape very descriptive for matching. Second, although the
appearance of a surface changes with illumination, the shape
of the surface is invariant to illumination conditions. Third,
there exist shape representations that provide local
descriptions of surface shape that are invariant to surface
position and attitude. These three factors make shape an
attractive basis for landmarks. Since motion stereo can be
used to extract the shape of a surface from monocular image
streams, it is feasible to use a local shape representation to
generate landmarks for comet absolute position estimation.
Figure 4 through Figure 6  show that surface shape works
well for absolute position estimation.

To represent landmarks, we use the spin-image shape
representation [4], a local surface shape descriptor
developed for surface alignment and object recognition. In
this representation, surface shape is described by a dense
collection of oriented points, 3-D points with surface
normal. Using a single point basis constructed from an
oriented point (point with surface normal), the position of
other points on the surface can be described by two
parameters. The accumulation of these parameters for many
points on the surface results in an image at each oriented
point. These images, localized 2-D patterns describing the
local shape of the surface, are invariant to rigid
transformations. Through correlation of images, point
correspondences between two surfaces can be established in
much the same way that templates are matched in 2-D
computer vision. When two surfaces have many point



correspondences, they match. From this surface match, the
absolute position of the spacecraft can be determined.

Spin-images from corresponding points on two different
views of the same object will be similar, so spin-images can
be used to establish point correspondences between
surfaces. In this application, we match a 3-D model of the
comet surface to a 3-D surface patch extracted from imagery
using motion stereo.  Briefly, the procedure is as follows;
for more details consult [4]. In the initial offline stage, the 3-
D model of the comet surface is constructed from orbital
imagery, stored as a polygonal mesh, and the spin-images at
each vertex in the mesh are generated. To initiate comet
absolute position estimation, a sequence of images is
acquired and the viewed surface patch is reconstructed using
motion stereo. Next, a subset of vertices is selected from the
surface patch and the spin-images for these vertices are
generated. The spin-images from the surface patch are then
compared to the spin-images from the model. When two
spin-images are highly correlated, a point correspondence
between the surface patch and the 3-D comet model is
established. Point correspondences are then grouped and
outliers are eliminated using geometric consistency. Groups
of geometrically consistent correspondences are then used to
calculate a rigid transformation that aligns the surface patch
with the comet model. Finally, the alignment of the surfaces
is verified and refined using a modified iterative closest
point algorithm [13]. Since the surface patch is represented
in the coordinate frame of the spacecraft, the transformation
that aligns the surfaces also describes the absolute position
of the spacecraft in the coordinate system of the comet.

To verify our comet absolute position estimation procedure
we conducted three tests using laboratory imagery of a
comet analog.. The analog was developed by a comet
scientist at JPL to replicate our best knowledge of the
appearance of a comet; it is rough on all scales and matte
black with an albedo of roughly 4%.

As shown in Figure 4 the first test verifies the ability to
match a small surface patch to a complete comet model.
First a sequence of orbital images was taken in the lab by
placing the comet analog on a turntable and rotating it in
front of the camera. Features were then tracked through
these sequences and the 3-D positions of the features were
computed. These features were connected into a triangular
mesh using a 2-D Delaunay triangulation of feature
positions projected onto a cylinder defined by the orbit of
the camera. This mesh constitutes the 3-D comet model.
Next, a different set of images from the same orbit was
taken. Features were tracked in these images and the
corresponding structure was computed.  These features were
linked together into a triangular mesh using a Delaunay
triangulation of the feature image positions. This mesh
constituted the surface patch. The surface patch was then
synthetically perturbed to an assumed position far from its
correct location. Spin-images were then used to align the
surface patch to the 3-D model from this assumed position.

structure
from

 motion

Flyby image stream

Complete 3-D model

3-D surface patch

Orbital image stream

structure
from

 motion

Spacecraft position

surface
matching

 Figure 4  Absolute position estimation procedure.

Table 1 Position information for Figure 4
Initial Estimate Truth

tx (cm) 10.00 0.23 0

ty (cm) 10.00 0.05 0

tz (cm) 10.00 0.00 0

δt (cm) 17.32 0.24 NA

rx (°) 50.00 0.41 0

ry (°) 30.00 1.65 0

rz (°) 50.00 0.59 0

δr (°) 76.81 1.80 NA
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 Figure 5  Illumination invariant position estimation.

Table 2 Position information for Figure 5
Right Left

Init. Est. Truth Init. Est. Truth

tx (cm) -10.00 -0.17 0 10.00 0.68 0

ty (cm) 10.00 0.11 0 10.00 0.34 0

tz (cm) 10.00 0.07 0 10.00 0.10 0

δt (cm) 17.32 0.22 NA 17.32 0.77 NA

rx (°) 50.00 0.13 0 50 0.36 0

ry (°) 30.00 0.20 0 30 -0.67 0

rz (°) 50.00 0.48 0 50 0.20 0

δr (°) 76.81 0.54 NA 76.81 0.79 NA

As shown in Figure 4 the surface alignment is quite good.
Table 1 gives a comparison of positions and attitude,
represented by Euler fixed angles, in order to assess the
performance of surface matching. The assumed position is
far from the true position with a Root Mean Square (RMS)
error in translation of δt=17.32 cm and a RMS error in
attitude of δr= 76.81°. However, the absolute position after
surface alignment is dramatically improved with δt=0.24 cm
and a RMS error in attitude of δr= 1.80°. This result verifies
our approach to absolute position estimation.

The next test verified the performance of shape-based
position estimation under variable illumination conditions.
As shown in Figure 5 , the comet analog was placed in front
of the camera and imaged under three different illumination
directions.  For each illumination direction a sequence of
images was taken along a trajectory that caused the camera
to rotate about a point on the comet surface. This trajectory
included rotation and translation components and was the
same for each illumination direction. The top of Figure 5
shows the first and last images in the sequences for a top,
right and left illumination directions. Although the images
are taken from the same position, the appearance of the
images varies drastically due to the changes in illumination
condition and subsequent shadowing.

The depth maps in the middle of Figure 5 were computed
using motion stereo. The coverage of the depth maps varies
based on illumination because you cannot reconstruct depth
in the shadow regions due to the absence of texture.
However, the depth values in the few regions of overlap
between depth maps show similar depth variations, which
demonstrates the surface shape can be reconstructed in a
manner that is independent of illumination conditions.

We matched the right illuminated surface to the top
illuminated surface and also matched the left illuminated
surface to the top illuminated surface. At the bottom of
Figure 5  we show the aligned surfaces and the initial and
estimated positions of the sensor. Initially the sensor is
assumed to be far from its true position. After alignment, the
sensor position is much closer to its true position. This is
shown qualitatively in Figure 5  (using a 2-D slice through
XZ plane for clarity) and quantitatively in Table 2.

The final test verified the performance of shape-based
position estimation under variable viewing trajectories. As
shown in Figure 6 , the comet analog was placed close to the
camera and three different sequences were taken.  In the
first sequence the camera was translated 0.25 cm and rotated
0.5° about the vertical axis between each image. The second
sequence was constructed by tilting the camera 5° and then
acquiring a sequence with 0.25 cm translation and 0.5°
vertical rotation between images. The final sequence was
acquired in a similar fashion except with a tilt of 10°. The
top of Figure 6  shows the first and last images for each
sequence. The depth maps in the middle of Figure 6  were
computed using motion stereo.



The tilting of the camera is obvious from the orientation of
the depth maps. We matched separately the 5 tilted and the
10 tilted depth maps to the 0 tilted depth map. The 2-D plot
on the bottom left of Figure 6  shows the surfaces and
sensor positions before alignment and the 2-D plot on the
bottom right shows the sensor positions and surfaces after
alignment. Although no ground truth position is available,
the precise surface alignment indicates that the position
estimation is correct. The timing for all 3 absolute position
estimation experiments including surface patch spin-image
generation, spin-image matching and pose estimation was
less than 15 s on a 176 MHz R10000 processor. The
positional accuracies as well as the rapid execution times
demonstrate that shape, in the form of spin-images, can be
used to generate effective view and illumination invariant
landmarks for comet absolute position estimation.
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 Figure 6  View-invariant absolute position estimation.

Hazard Detection

Hazard detection algorithms locate landing hazards in
imagery while hazard avoidance algorithms guide the
spacecraft away from hazards once they are detected. To
date we have only investigated the hazard detection
problem. Hazard detection depends on the mission scenario
and the design of the spacecraft. As a baseline, we are using
the ST4/Champollion spacecraft and mission scenario when
designing our algorithms.  In their scenario, regions of large
slope and rough surfaces constitute hazards to the
spacecraft. It is expected that by eliminating regions using
these low-level hazards, that the high-level hazards such as
crevasses and boulders will be detected and avoided. We
can compute surface slope and roughness using the dense
surfaces reconstructed using motion stereo. By applying
constraints on surface roughness and slope, we can find the
areas in the surface being imaged that are free of hazards.

We define surface slope at each pixel in a depth map by
fitting a plane to the surface data in a local area around the
pixel.  The size of this area is set to the expected size of the
lander footprint. The plane is fit using a standard least
squares solution for plane fitting which has a closed form
solution [2]. Given this local plane the slope of the surface
with respect to a specified approach direction can be
computed. By placing a maximum allowable slope
constraint on this data, surface regions that are too oblique
with respect to the landing direction are be eliminated.

Surface roughness is defined as the maximum absolute
deviation from the best-fit plane of the surface data in a
local area around a pixel. Once again this area is set to the
expected footprint of the lander. This definition of
roughness is appropriate because it will detect both rocks
and crevasses. By applying a maximum surface roughness
constraint, flat regions that exhibit too much surface
variation for safe landing are eliminated.

We can measure the surface slope and roughness using the
dense surface reconstructed using motion stereo. Constraints
on maximum roughness and slope will be used to detect
parts of the scene to be avoided, and given these constraints
safe landing sites can be determined.

Two tests were conducted to assess the performance of
hazard detection.  In the first test, hazards were detected
from same set of images used in Figure 6 . In these images,
the camera was tilted between each sequence. Figure 7
shows an image for reference and the reconstructed terrain
maps, for each sequence. Below the terrain map are images
that show the roughness hazards (1 cm), the slope hazards
(60°) and the safe zones for landing. The safe zones for all
three sequences roughly correspond to the same places on
the surface of the comet analog showing that our hazard
detection algorithms have some view invariance.

In the second test, the hazards detected in a descent
sequence were assessed.  For descent imaging, the image
epipoles lie in the image, making image rectification and



subsequent stereo matching impossible. However, a coarse
terrain map can be reconstructed from the 3-D position of
tracked features by projecting the depth of the features back
into the image.  Using this terrain map, hazards can be
assessed in descent imagery.
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1 cm Roughness Hazard Map (black)

60° Slope Hazard Map (black)

Safe Landing Map (white)

 Figure 7  Motion stereo based hazard detection.

The top of Figure 8  shows the first and last image of a
descent sequence. Below that are shown the tracks of the ¼
of the features used to generate the terrain map. Below the
feature tracks are shown the reconstructed terrain map, the
map of safe landing zones, the map of roughness hazards (1
cm) and the map of slope hazards (75°). The hole in the
terrain map and subsequent maps indicates the area in the
image where depth cannot be computed reliably because

feature disparity is too small. Qualitative comparison of
hazards to the terrain map shows that hazards have been
correctly detected. This test shows that surface structure can
be computed from descent sequences and that subsequently
hazards can be detected using our algorithms.

4. CONCLUSIONS

The algorithms we have discussed are advancing the state of
the art in vision-based navigation for small body exploration
in many directions.  First, an integrated set of algorithms for
6 degree of freedom motion and position estimation for
comets and asteroids during descent and landing has never
been developed. Second, these algorithms perform
completely autonomously. These algorithms also provide
techniques for dense surface reconstruction from monocular
image streams that enable hazard avoidance and 3-D
mapping for in-situ science. Finally, these algorithms are
based on a single camera; this has positive implications in
terms of power, cost and mass for any spacecraft utilizing
these techniques.

The primary user of this technology will be small body
missions. A future small body mission that can benefit
greatly from our algorithms is Comet Nucleus Sample
Return (CNSR).  A requirement of CNSR is precision
guidance and landing with hazard avoidance to three pre-
determined sites on a comet nucleus. Other relevant future
small body missions are Large Asteroid Sample Return,
Asteroid Tomography and the Multi-Asteroid Trojans Flyby
missions. This technology is also applicable to hazard
avoidance during landing for the Europa Lander mission
and 3-D surface mapping by aerobots during the Titan
Organics Explorer mission.

In the near term, these algorithms can also be applied to the
problem of safe and precise landing on Mars. Image-based
motion estimation can provide estimates of rates on
spacecraft attitude and position that can be used to control
the trajectory of a lander during precision landing.
Furthermore, during the terminal phase of descent, our
algorithms for surface reconstruction from motion stereo
and hazard detection can be applied to detect surface
hazards and ultimately enable safe landing.

Although we have developed many algorithms for the small
body navigation problem, there is still significant work to be
done. Currently we are working on algorithms that tightly
couple motion and position estimation so that high accuracy
motion and position estimates can be obtained for longer
periods. Better motion estimates will improve the accuracy
of surfaces generated from motion stereo and will ultimately
lead to more accurate hazard detection. Another area of
work will be to modify existing algorithms to generate
denser depth estimates from descent imagery. This will
provide us with the data needed to match surfaces and
consequently estimate absolute position from descent
imagery. Another area of improvement will be to extend our
motion and motion stereo algorithms to operate on multiple



image frames. In the end, we hope to demonstrate our
algorithms in a real-time hardware-in-the-loop test on an
unmanned aerial vehicle.
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 Figure 8  Hazard detection from descent imagery.
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