
A shortened version of this paper appears in iSAIRAS’99.

1

Abstract

Comets and asteroids play a prominent role in NASA's
roadmap for solar system exploration because they hold
answers to questions about the origin of the solar system.
NASA is planning multiple small body missions that range
in scope from near body flybys to complete sample return
[4][8][12][15]. This paper presents an algorithm for
autonomous onboard motion estimation that will enable the
precision guidance and landing necessary for small body
sample return. Our techniques are based on automatic
feature tracking between a pair of descent camera images
followed by two frame motion estimation and scale recovery
using laser altimetry data. The output of our algorithm is an
estimate of rigid motion (attitude and position) and motion
covariance between frames. This motion estimate can be
passed directly to the spacecraft guidance navigation and
control system to enable rapid execution of safe and precise
trajectories.

1 Introduction

Due to the small size, irregular shape and variable
surface properties of small bodies (see Figure 2), accurate
motion estimation is needed for safe and precise small body
exploration. Because of the communication delay induced
by the large distances between the earth and targeted small
bodies, landing on small bodies must be done
autonomously using on-board sensors and algorithms.
Current navigation technology does not provide the
precision necessary to accurately land on a small bodies, so
novel motion estimation techniques must be developed.
Computer vision offers a possible solution to precise
motion estimation.

Historically, optical navigation has been used for orbit
determination and instrument pointing during close fly-bys
of small bodies and moons of the outer planets. Generally,
this has been implemented by ground-based image
processing to extract centroids of small reference targets
like asteroids and moons from which target relative

spacecraft attitude and position are computed.
The Near Earth Asteroid Rendezvous (NEAR), a current

mission that will rendezvous with asteroid Eros 433 in
February 2000, uses optical navigation extensively for orbit
determination and small body 3-D modeling [12]. Their
base-lined navigation technique will combine manually
designated landmarks from imagery of Eros and
radiometric data to compute and control the trajectory of the
orbiter. Simulations show that after a week of ground-based
processing, the orbit of the NEAR spacecraft can be
determined to 100’s of meters from an orbit of 500
kilometers. Without optical navigation, the accuracy of the
orbit determination from radiometric data would be closer
to 5 kilometers. The NEAR mission will clearly
demonstrate the effectiveness of optical navigation.
However, this ground-based paradigm will not map to
missions involving small body exploration and landing.

Small body exploration requires multiple precise target
relative maneuvers during a brief descent to the surface. The
round trip light time prohibits the determination of the
necessary trajectory control maneuvers on the ground.
Furthermore, typical onboard position sensors do not have
the accuracy needed for small body landing (e.g., during a
small body descent taking a few hours accelerometer errors
will grow to the kilometer level). However, the required

The work described in this paper was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under contract from
the National Aeronautics and Space Administration.

Figure 1: Image-based precision landing. As the space-
craft descends to the surface, images and laser altime-
try are processed to determine the motion of the
spacecraft.

Precise Image-Based Motion Estimation for Autonomous Small Body Exploration

Andrew E. Johnson and Larry H. Matthies

Jet Propulsion Laboratory
Mail Stop 125-209, 4800 Oak Grove Drive

Pasadena, CA 91109
(aej,lhm}@robotics.jpl.nasa.gov

November 1998

2

positional accuracies can be obtained during small body
landing if autonomous real-time optical navigation methods
are developed.

The Deep Space 1 mission as part of the New
Millennium Program is flying an autonomous optical
navigation technology demonstration. The DS-1
AutoOpNav system will use onboard centroiding of
reference asteroids for autonomous navigation during small
body fly-bys [2]. They expect to obtain automatic position
estimates with accuracies on order of 100 kilometers. For
scientific instrument pointing purposes, this accuracy is
sufficient. Controlled small body landing will require much
better position and motion estimation accuracies.
Furthermore, since the appearance of the small body is
variable, small body landing cannot always rely on
reference landmarks for navigation. The DS-1 AutoOpNav
system will demonstrate autonomy and computer vision in
space, however for small body landing a more versatile and
accurate system is required.

This paper describes a fully autonomous and onboard
solution for accurate and robust motion estimation near a
proximal small body. Our techniques are based on
automatic feature tracking between a pair of images
followed by two frame motion estimation and scale
recovery using laser altimetry data. The output of our
algorithm is an estimate of rigid motion (attitude and
position) and motion covariance between frames. This
motion estimate can be passed directly to the spacecraft
guidance navigation and control system to enable rapid
execution of safe and precise trajectories.

The rest of the paper is organized as follows. In Section 2
we describe in detail our complete motion estimation
algorithm. In Section 3 we present tests on real data which
show motion estimation rates of 4 Hz with positional
accuracies of 4.5% of the distance traveled and attitudinal
accuracies of 0.06 degrees. In Section 4 we describe a set of
tests which are used to predict the performance of the
algorithms. Using this simulation, we show positional
accuracies of 0.22 m when descending 65 m from an
altitude of 1000 m, horizontal landing position accuracies
of 3.6 m when descending from 1000 m, and rotational

accuracies of 0.006˚ when off axis pointing of 0.6˚ are
possible. Finally in Section 5 we present conclusions.

2 Motion Estimation

Motion estimation from images has a long history in the
machine vision literature. The algorithm presented in this
paper falls in the category of two-frame feature-based
motion estimation algorithms. To obtain complete 6 DOF
motion estimates, our algorithm is augmented by altimeter
measurements for scale estimation.

Once the spacecraft sensors are pointed at the small body
surface, our algorithm works as follows (see Figure 1 for a
pictorial description). At one time instant a descent camera
image and a laser altimeter reading are taken. A short time
later, another image and altimeter reading are taken. Our
algorithm then processes these pairs of measurements to
estimate the rigid motion between readings. There are
multiple steps in our algorithm. First, distinct features,
which are pixels that can be tracked well across multiple
images, are detected in the first image. Next, these features
are located in the second image by feature tracking. Given
these feature matches, the motion state and covariance of
the spacecraft, up to a scale on translation, are computed
using a two stage motion estimation algorithm. Finally the
scale of translation is computed by combining altimetry
with the motion estimates using one of two methods which
depend on the descent angle. The block diagram for motion
estimation is shown in Figure 3.

2.1 Feature Detection

The first step in two-frame motion estimation is the
extraction of features from the first image. Features are
pixel locations and the surrounding image intensity
neighborhood (call this an image window) that can be
tracked well across multiple images that may under go
arbitrary, but small, changes in illumination or viewing
direction. A qualitative definition of a good feature is an
image window that has strong texture variations in all
directions.

Feature detection has been studied extensively and
multiple proven feature detection methods exist.
Consequently, we elected to implement a proven feature
detection method instead of redesigning our own. Since
processing speed is a very important design constraint for
our application, we selected the state of the art feature
detection algorithm of Benedetti and Perona [2]. This
algorithm is an implementation of the well know Shi-
Tomasi feature detector and tracker [16] modified to
eliminate transcendental arithmetic. Although they
ultimately implemented their algorithm in hardware on a
reconfigurable computer, their algorithmic speed
enhancements also decrease the running time of software
implementations.

Figure 2: Small bodies.

AsteroidsComet Halley

3

2.1.1. Shi-Tomasi-Kanade Feature Detection

The theoretical derivation of their feature detector is
explained fully in [2]; we will detail our software
implementation of this algorithm so that the necessary
computations are apparent. LetI(p,q) be function defining
image intensity for an image. We would like to determine if
an image window containingM pixels centered on pixelp =
(p,q) is distinctive enough to be considered a feature. First
form the matrix

(1)

from the partial derivatives of image intensityIp and Iq
computed using finite differences

(2)

The criterion for the image pixel to be a feature is that the
two eigenvaluesλ1 andλ2 of G be greater than a threshold
λt (i.e., .) As shown in [2], this requirement is
the same as the following

(3)

Surfaces of celestial bodies generally appear highly
textured[ref], so good features to track are expected to be
plentiful. Usually feature detection algorithms exhaustively
search the image for every distinct feature. However, when
the goal is motion estimation, only a relatively small
number of features need to be tracked (~100).

Consequently, we can speed up feature tracking by using a
random search strategy instead of exhaustive search while
still guaranteeing that the required number of features are
detected. Suppose thatN features are needed for motion
estimation. Our detection algorithm selects a pixel at
random from the image (uniform distribution in row and
column directions). It then computes the image derivatives
(unless they have already been computed from a previous
feature detection) and theG matrix for a neighborhood ofM
pixels around the pixel. Next, the test in Equation 3 is
applied to the pixel. If the pixel passes the test, it becomes a
detected feature. This procedure is repeated untilN features
are detected.

2.1.2. Processing Issues

The running time of the randomized detection algorithm
depends on the number of features required, and the number
of pixels in the scene which pass the feature detection
threshold. In general we have found that the randomized
search algorithm increases the running time of feature
detection by an order of magnitude over traditional
exhaustive search. In Figure 4 a comparison of the best 50
features selected in an 640x480 image (top) using
exhaustive search versus 50 features selected using our
randomized algorithm (bottom) are shown. The exhaustive
search algorithm took 11.19 seconds while the randomized
algorithm took 0.29 seconds to compute on an 174 Mhz
R10000 SGI O2. As the figure shows, the features selected
by the random search algorithm occur in similar image
locations as those features selected using exhaustive search
indicating that random search is detecting appropriate
features in highly textured areas of the image.

The majority of the memory required for feature tracking
come from the 2-D character array for storing the image
(assuming an 8 bit image) and two 2-D integer arrays for the
image derivatives. For a 1024x1024 imager the memory
requirement is 9 MB of RAM. At the expense of increased
processing time, the image derivatives can be computed
from the image for each pixel in every window investigated
for features. This will eliminate the need for the image
derivative arrays and will reduce the memory requirements
to 1 MB.

There are two parameters in feature detection: the
number of pixelsM comprising the window in which theG
matrix is computed; and the threshold on the eigenvalueλτ,
above which a pixel is considered a feature. For
convenience, the window around a pixel is square. In
Figure 4, the window is 5x5, soM=25. In general, the size
of the window will dictate the scale of the features detected.
Small windows will detect precisely localized small scale
features, but they are sensitive to image noise. Larger
windows will detect large scale features with less location
accuracy, but will be less susceptible to noise. Since we are

Figure 3: Block diagram for motion estimation.

detect
features

track
features

estimate
motion

estimate
scale

6 DoF Motion

motion
feedback

add
featuresfeatures

feature tracks

5 DoF motion

images

altimetry

G

I p
k()

2

k 1=

M

∑ I p
k
I q
k

k 1=

M

∑

I p
k
I q
k

k 1=

M

∑ I q
k()

2

k 1=

M

∑

a b

b c
= =

I p p() I p 1 q,+() I p 1– q,()–
2

--=

I q p() I p q 1+,() I p q 1–,()–
2

--=

λ2 λ1 λt> >

a λt–() c λt–() 0> a λt>

4

using feature detection for motion estimation, the precise
localization of features as well as rapid processing time is
very important. Therefore when selecting a value forM, we
attempt to make it as small as possible while still obtaining
accurate feature detection and tracking. Automatic methods
can be developed, but currently the user setsM based on
feature tracking performance.

Sinceλτ is a threshold on the eigenvalues of matrix made
from theM additions of pixel derivative products, it will be
proportional toM. To remove this dependence, we scaleλτ
byM which makesλτ depend only on the texturedness in the
image. Since the texturedness of the scene does not vary
greatly for precision landing,λτ will only have to be set
once for each small body. For the features in Figure 4,λτ
was set to 2500. Automatic methods requiring little
additional computation can be developed for settingλτ, but
currently the user sets it based on feature detection
performance.

2.2 Feature Tracking

The next step in motion estimation is to locate the
features detected in the first frame in the second frame. This
procedure is called feature tracking. As with feature
detection, there exist multiple methods for feature tracking
in the machine vision literature. Feature tracking can be
split in to two groups of algorithms: correlation based
methods[11] and optical flow based methods [16].
Correlation based methods are appropriate when the motion
of features in the image is expected to be large. For small
motions, optical flow based methods are more appropriate
because in general they require less computation than
correlation methods1. We have chosen an optical flow based
method for feature tracking because in our application of
precision landing, we know a-priori that the motion
between image frames will be small. Furthermore, our
selected method of feature detection is derived from optical
flow based feature tracking; the features that are detected
are exactly the features that give the best results for feature
tracking based on optical flow.

We use the Shi-Tomasi-Kanade feature tracker which
seeks to minimize the intensity differenceε between two
imagesI andJ

(4)

over the space of possible feature image translationsd in the
vicinity of the feature at pixel locationp in image I. To
minimize Equation 4, it is differentiated with respect tod

and the result is set to zero. After linearizing the resulting
system by truncating its Taylor expansion, the system of
equations

(5)
with G given by Equation 1 ande given by

(6)

can be solved for the feature motiond.
Because of the linearization, the solution to Equation 5

does not minimize Equation 4 exactly. However using
Equation 5, a Newton-Rhapson style iterative minimization
can be used to solve for the feature motion exactly. The
procedure is to first solve Equation 5 ford0 (G ande are
constructed assumingd = 0). Then iteratively solve
Equation 5 fordi with e replaced by

(7)

until di changes very little. Sincedi is a floating point value,

1. Correlation methods requireO(M2) multiplications per feature while optical
flow methods requireO(SM)multiplications per feature whereSis the number
of steps required to reach the local minimum of the SSD intensity surface. Intu-
itively, Swill be on orderM1/2 because it is related to the distance between the
pixel and the intensity local minimum. This results inO(M3/2) multiplications
per feature for optical flow based feature tracking.

ε J
k

p d+() I
k

p()–()
2

k 1=

M

∑=

Figure 4: Detected features. Exhaustive search (top) and
random search (bottom).

Gd e=

e

I
k

p() J
k

p()–()I p
k

p()
k 1=

M

∑

I
k

p() J
k

p()–()I q
k

p()
k 1=

M

∑
=

ei

I
k

p() J
k

p di 1–+()–()I p
k

p()
k 1=

M

∑

I
k

p() J
k

p di 1–+()–()I q
k

p()
k 1=

M

∑
=

5

constructingei requires bilinear interpolation of imageJ.
For example, if we would like to determine the intensity of
imageJ at floating point image coordinatesp = [p,q]T

(8)

where represents the floor ofx and .

2.2.1. Processing Issues

The running time of feature tracking isO(MN) whereN
is the number of features being tracked andM is the size of
the window used for tracking. The size of the window used
in feature tracking does not have to be the same as the size
of the window used in feature detection. In fact, for robust
feature tracking, the window should be large enough that it
contains the location of the pixel of the feature in the second
frame. With large feature displacements between images, it
may be necessary to increase the size of the window used
for tracking to a value greater than that used for feature
detection. For the feature tracks shown in Figure 5, the size
of the window is 7x7 and the median displacement between
features is 2.35 pixels; only 20 of 50 tracked features are
shown for clarity. Tracking of these 50 features took 0.08
seconds on an 174 Mhz R10000 SGI O2.

The memory requirements for feature tracking are two
character images, and if desired for speed, two integer

arrays for the gradients of the first image. The total memory
for 1024x1024 images will be 10 MB with the gradient
images or 2 MB without the gradient arrays.

2.3 Two Frame Motion Estimation

The motion between two camera views can be described
by a rigid transformation(R,T)whereRencodes the rotation
between views andT encodes the translation between
views. Once features are tracked between images, the
motion of the camera can be estimated by solving for the
motion parameters that, when applied to the features in the
first image, bring them close to the corresponding features
in the second image.

In our algorithm, motion estimation is a two stage
process. First an initial estimate of the motion is computed
using a linear algorithm. This algorithm is applied multiple
times using different sets of features to eliminate feature
track outliers and determine a robust LMedS estimate of
motion. The result of this algorithm is then used as input to
a more accurate nonlinear algorithm that solves for the
motion parameters directly. Since an good initial estimate is
needed to initialize any nonlinear feature-based motion
estimation algorithm, this two stage approach is common
[22]. Output from the nonlinear algorithm is the estimate of
the five motion parameters and their covariance. Our
algorithm assumes that the camera taking the images has
been intrinsically calibrated (i.e., focal length, radial
distortion, optical center, skew and aspect are all known).
Output from the nonlinear algorithm is the estimate of the
five motion parameters and their covariance.

A fundamental short coming of all image-based motion
estimation algorithms is the inability to solve for the
magnitude of translational motion. Intuitively the reason for
this is that the algorithms cannot differentiate between a
very large object that is far from the camera or a small
object that is close to the camera; the camera does not
convey information about scene scale. Consequently, the
output of motion estimation is a 5 DoF motion composed of
the a unit vector describing the direction of
heading and the rotation matrixR between views. As is
shown in the next section, laser altimetry can be combined
with 5 DoF motion estimation to compute the complete 6
DoF motion of the camera.

2.3.1. Robust Linear Motion Estimation

The first stage of motion estimation uses a linear
algorithm to compute the motion between views[10]. Since
the linear algorithm has a closed form solution, motion can
be computed quickly. However, the linear algorithm does
not solve for the motion parameters directly, so its results
will not be as accurate as those obtained using the nonlinear
algorithm. Our linear algorithm is an implementation of the
algorithm presented in [21] augmented by normalization

J p v,()
1 p

˜
–() 1 q

˜
–()J p q,() p

˜
1 q

˜
–()J p 1+ q,()+ +

1 p
˜

–()q
˜
J p q 1+,() p

˜
q
˜
J p 1+ q 1+,()+

=

x x
˜

x x–=

Figure 5: Tracked features. First image (top) and second
image (bottom).

Ts T T⁄=

6

presented in [6] for better numerical conditioning. To filter
out possible outliers in feature detection, we use a robust
linear motion estimation algorithm based on least median of
squares[25]. Below we detail the computations in the
algorithm; for a more complete description please see
[6][21][25].

First, the homogenous coordinates of each feature are
determined by projecting them onto the unit focal plane.
This projection will depend on the lens, imager, and camera
model used. A simple model for the transformation of a
feature at pixel location(pi,qi) to its homogenous
coordinatesui is

(9)

where(Cp,Cq) is the center of the camera in pixel units,f is
the focal length of the camera in pixel units ands is the
aspect ratio of the pixels. This model assumes no radial
distortion in the camera. More sophisticated models that
include radial distortion are used when necessary [20].

If ui is the homogenous coordinates of featurei in the
first image then let be the homogenous coordinates of
the feature in the second image. The linear algorithm is
based om the constraint that the optical centers of the two
images and the 3-D location of the feature point must lie on
a plane. Thisepipolar constraint can be written as

(10)

whereE is called the essential matrix and
(11)

where signifies the cross product matrix

. (12)

Equation 10 will hold for all features, but in the presence
of feature position noise, it will not hold exactly. The linear
algorithm utilizes these constraints and multiple features to
solve forE by minimizing

(13)

Using Equation 11, it then solves for the motion parameters.
To provide numerical stability [6], the homogenous

coordinates from each image are first translated and scaled
independently so that their centroid is (0,0,1) and their
mean distance from the origin is . This can be
accomplished by replacing eachui with where

(14)

Each is replaced with using a similarly
defined matrixQ’.

To solve Equation 13 the matrix

(15)

is created. The solutionh to is the unit eigenvector
of ATA associated with the its smallest eigenvalue. This
eigenvalue problem can be solved using standard
algorithms like thejacobi algorithm from [14]. Fromh,
Q andQ’, the essential matrixE is computed using

. (16)

The robust linear motion algorithm uses the above
equations and LMedS to find a solution to Equation 13 that
is not influenced by outliers. The procedure, which is the
same as the Least Median of Squares method for computing
a robust estimate of the fundamental matrix in [25], is as
follows. A subset of 8 feature tracks (the minimum number
of points required) is selected at random from the set of all
feature tracks. An estimate of the essential matrix is then
computed using this subset and Equation 14 through
Equation 16. Next, the epipolar errorei from Equation 10 is
computed for all feature tracks, and the medianeM of these
errors is determined. If the median epipolar error for this
subset is less than the median epipolar error determined
from all of the previously selected subsets, the current
essential matrix and its associated epipolar error become the
best 8-point estimate for the essential matrix.

This process is repeated for a fixed numberm of subsets
that depends on the probabilityπ of a sample free of outliers

ui

ui

vi

1

pi Cp–

f

qi Cq–

sf

1

= =

u'i

ei u'iEui 0= =

E Ts[]
x
R=

[]x

x1 x2 x3, ,()T[]x

0 x3– x2

x3 0 x1–

x2– x1 0

=

min u'iEui
i 1=

N

∑

2
ûi Qui=

Q
1 k⁄ 0 u k⁄–

0 1 k⁄ v k⁄–

0 0 1

=

u
1
N
---- ui

i 1=

N

∑= v
1
N
---- vi

i 1=

N

∑=

k 2 ui u–()2
vi v–()2

+()
i 1=

N

∑=

u'i u'ˆ i Q'u'i=

Figure 6: Unit focal length imaging geometry. World
coordinate origin O is on image plane and optical cen-
ter C is 1 unit behind image plane.

x

z

y

X=(x,y,z)

.p= (p,q) = (u,v,0)

I

.p

q

C = (0,0,-1)

O

A

û1u'ˆ 1 û1v'ˆ 1 û1 v̂1u'ˆ 1 v̂1v'ˆ 1 v̂1 u'ˆ 1 v'ˆ 1 1

… … … … … … … … …
ûNu'ˆ N ûNv'ˆ N ûN v̂Nu'ˆ N v̂Nv'ˆ N v̂N u'ˆ N v'ˆ N 1

=

min Ah

E E1 E2 E3 2Q'
T

h1 h4 h7

h2 h5 h8

h3 h6 h9

Q= =

7

being selected and the percentage of outlier feature tracksε
in the set of feature tracks

(17)

For our experiments, we setπ = 0.99 andε = 20% resulting
in the selection ofm=26 subsets (independent of the number
of feature tracks).

Once the best 8-point estimate of the essential matrix is
found, an additional step is required to estimate the robust
essential matrix: the essential matrix computed from all of
the feature tracks after outliers have been removed. First,
the robust standard deviation is computed

(18)

Next, outliers are detected by finding feature tracks whose
square epipolar errors (using the best 8-point estimate of the
essential matrix) are greater than . Finally, the
robust essential matrix is computed using all feature tracks
that are not outliers according to the above criterion. This
final estimate is the best robust estimate of the essential
matrix because it takes into account all feature tracks while
still eliminating feature track outliers.

The next stage in linear motion estimation is to extract
the motion parameters from the essential matrixE. By
manipulating Equation 13, it can be shown thatTs is the
solution to which is the unit eigenvector with
smallest eigenvalue of the matrix . Using the constraint
that the scene must be in front of the camera (positive z), the
sign of the translation can be determined. If

(19)

then where the summation is over a few randomly
selected 3-D points to ensure robustness to noise.

Finding the solution to the rotation matrixR is more
involved. Rearranging Equation 11 results in

; given that there exists noise in the feature
tracks,R can be found by solving

(20)

subject toR being a rotation matrix. Equation 20 can be
solved forRT as follows: Let

(21)

then the eigenvector corresponding to the smallest
eigenvalue ofB is the unit quaternionq associated withRT.
Equation 22 can then be used to transform between the
quaternion and matrix representations ofR.

2.3.2. Nonlinear Motion Estimation

Robust linear motion estimation serves two purposes: it
provides an initial estimate of the 5 DoF motion between
views and it detects and eliminates feature track outliers.
The nonlinear algorithm takes the initial linear estimate of
the motion and refines it by minimizing an error term that is
a function of the motion parameters and the outlier-free
feature tracks. There exists many nonlinear motion
estimation algorithms in the vision literature. Instead of
starting from scratch, the nonlinear algorithm we have
developed combines the attractive elements of multiple
algorithms to produce an algorithm that is computationally
efficient, numerically stable and accurate. For numerical
stability, we use the camera model parameterization of
Azarbayejani and Pentland[1]. For highly accurate motion
parameter estimation we use the Levenberg-Marquardt
algorithm as proposed by Szeliski and Kang[18]. Finally,
for computational efficiency, we remove the scene structure
from the nonlinear minimization as suggested by Weng et
al. in [22].

Before we can express the error function, we need to
detail the motion parameters over which the minimization
will take place. First of all, the motion between frames is
presented as a translation and rotation pair(R,T). To
simplify the parameter estimation, we represent the rotation
with a unit quaternion where the
rotation matrix in terms of a unit quaternion is

.(22)

The translation is represented by a unit vector
. Together the unit quaternion and unit

translation comprise the parameter state vectora.

(23)

Nonlinear motion estimation attempts to minimize the
image plane error between the features in the second view
and the projection of the features in the first view into the
second view given the motion between frames. In the
photogrammetry, this technique is called bundle
adjustment. If the unit focal coordinates (defined by
Equation 9) of the features in imageI are and

 in imageJ, then the image plane error is

(24)

where f represents the projection of the features into
image J given the motiona. Correct image projection
requires knowledge of the depth to a feature and a
perspective camera model. Using the model of
Azarbayejani and Pentland [1], if the (unknown) feature

m
1 π–()log

1 1 ε–()8
–()log

---=

σr 1.4826 1 5
N 8–
-------------+ 

  eM=

2.5σr()2

min E
T
Ts

EE
T

Ts u'i×() Eui() 0<⋅
i

∑
Ts T– s⇐

R
T

Ts–[]
x

E
T

=

min R
T

Ts–[]
x

E
T

–()

C C1 C2 C3 Ts–[]
x

= =

D D1 D2 D3 E
T

= =

B Bi
T

Bi
i 1=

3

∑= Bi
0 Ci Di–()T

Di Ci– Di Ci+[]
x

=

q qo q1 q2 q3

T
=

R q()

qo
2

q1
2

q2
2

– q3
2

–+ 2 q1q2 q0q3–() 2 q1q3 q0q2+()

2 q1q2 q0q3+() qo
2

q1
2

– q2
2

q3
2

–+ 2 q2q3 q0q1–()

2 q1q3 q0q2–() 2 q2q3 q0q1+() qo
2

q1
2

– q2
2

– q3
2

+

=

T Tx Ty Tz

T
=

a qo q1 q2 q3 Tx Ty Tz

T
=

ui ui vi

T
=

ui' ui' vi'
T

=

C a() ui' f ui a,()–
2

i
∑=

ui'

8

depths from the image plane arezi, then the relation
between unit focal feature coordinates and 3-D feature
coordinates is

(25)

The features in imageI are transformed into imageJ
according to

. (26)

By combining Equation 25 and Equation 26, the feature
depths can be computed through triangulation by
solving

(27)

assuming that the translation between views is nonzero[21].
The camera model given the imaging geometry, shown

in Figure 6, is

(28)

Combining Equation 25 Equation 26 and Equation 28
results in a complete definition of Equation 24.

To estimate the motion parameters, we minimize
Equation 24 using the Levenberg-Marquardt algorithm for
nonlinear minimization. This approach was also used by
Szeliski and Kang [18], however, unlike in their approach,
we do not include the feature depths in the minimization.
The result is an accurate and computationally efficient
approach to motion estimation.

The Levenberg-Marquardt algorithm finds the minimum
of C(a) by iteratively solving

(29)
for δa where

, (30)

(31)

andλ is a scalar whose value is changed at each iteration
depending on the solution to Equation 29. After each
iteration, the estimate ofa is updated to a+δa.

In our application, is a 2x7 matrix

(32)

where, using chain rule,

(33)

and

. (34)

From Equation 28

(35)

The technique presented in Wheeler and Ikeuchi [23] can be
used to simplify jacobian of rotation by minimizing about
the identity quaternionqI. Equation 26 can be rewritten as

(36)

using the fact thatR(qI) is the identity and .
Following the derivation in [23],

(37)

The advantage of this form of the jacobian of rotation is that
is enforces the unit magnitude constraint on the quaternion
and its simple form results in efficient computation.

The jacobian of translation is

(38)

Using Equation 32 through Equation 38, can be
determined, soA andb can be computed.

The Levenberg-Marquardt algorithm (a brief description
is given in Numerical Recipes in C [14]) minimizes
nonlinear functions by continuously varying between
steepest descent far from the minimum and the inverse-
Hessian method close to the minimum. Variation between
minimization methods is controlled by the value ofλ in
Equation 29; small values ofλ correspond to inverse-
Hessian and large values correspond to steepest descent.

Xi

xi

yi

zi

ui 1 zi+()

vi 1 zi+()

zi

= =

X'i x'i y'i z'i
T

R q()Xi T+= =

zi zi'
T

Rui– ui'
zi

zi'
T=

f u'i a,() x'

y'

1
1 z'+
------------=

A λI+()δa b–=

A
a∂

∂
f ui a,() 

 
i

∑
T

a∂
∂

f ui a,() 
 =

b
a∂

∂
f ui a,() 

  ui' f ui a,()–()
i

∑=

a∂
∂ f

a∂
∂

f ui a,()
q∂

∂
f ui a,()

T∂
∂

f ui a,()=

q∂
∂

f ui a,()
X'∂
∂

f ui a,()
q∂

∂
X'=

T∂
∂

f ui a,()
X'∂
∂

f ui a,()
T∂
∂

X'=

X'∂
∂

f ui a,()

1
1 z'+
------------ 0 x'

1 z'+()2
--------------------–

0
1

1 z'+
------------ y'

1 z'+()2
--------------------–

=

X' R qI()R q()X T+ R qI()X̃ T+= =

X̃ R q()X=

q∂
∂

X'
q∂

∂
R

q qI=
R q()X

q∂
∂

R
q qI=

X̃
0 0 2z̃ 2– ỹ

0 2– z̃ 0 2x̃

0 2ỹ 2– x̃ 0

= = =

Figure 7: Nonlinear motion estimation algorithm.

1. Compute C(a)
2. Setλ = 0.001 (start with inverse-Hessian)

3. Compute A,b and solve forδa.

4. Evaluate with &

5. If

goto 3.
Else

solve for new feature depths using Equation 27
goto 3.

Stop when

A λI+()δa b–=

C a aδ+() q qδ+ 1= T Tδ+ 1=

C a aδ+() C a()≥
λ 10λ←

λ 0.1λ←
q q qδ+() q qδ+⁄←
T T Tδ+() T Tδ+⁄←
a a aδ+←

C a aδ+() C a()–() C a()⁄ 0.001<

T∂
∂

X' I=

a∂
∂

f ui a,()

9

Since we are solving for a rotation represented by a unit
quaternion and also a unit length translation, these
constraints need to be enforced during minimization. We
enforce these constraints by setting and

during the update of the parameter vector at
each iteration. Consequently, these constraints are enforced
while not complicating the minimization by including the
constraints explicitly in the minimization function.

The complete nonlinear minimization procedure is given
in Figure 7.

In our implementation of nonlinear motion estimation,
the scene structure, encoded in the relative depths, is not
included in the parameter vector during minimization.
Inclusion of the feature depths would increase the length of
the parameter vector from 7 to 7+N. Since the minimization
relies on an inversion of a square matrix of rank equal to the
length of the parameter vector to solve Equation 29, a
computationally expensive matrix inversion would result.
Since feature depths can be computed directly from the
motion between views, it is not necessary to include them in
the parameter vector. Instead, at each iteration, the feature
depths are updated using the current motion estimate. The
result is a computationally efficient and accurate motion
estimation algorithm. It should be noted that in the case of
multi-frame motion estimation, the inclusion of structure in
the state is recommended because it enforces consistency in
motion and structure estimates across multiple frames
containing the same set of features. Since we are computing
motion for just two frames, it is not necessary for our
application.

The output of nonlinear motion estimation is an estimate
of the 5 DoF motion between views. In addition, the
covarianceΣ of the motion parametersa can be extracted
directly from the quantities computed during minimization
using

. (39)

2.3.3. Processing Issues

If the number of featuresN is much greater than 8, then
the running time of closed form linear motion estimation is
O(N). However, for the robust linear motion estimation
algorithm, the number of features used in each trial is fixed
at 8, so each trial takes constant time. Therefore, the running
time of robust linear motion estimation isO(m)proportional
to the number of trials m and does not depend on the
number of features tracked. For the images shown in
Figure 5, the robust linear motion algorithm took 0.63
seconds for 78 trials (π =0.99, ε = 0.3) on an 174 Mhz
R10000 SGI O2.

Each iteration of the nonlinear motion algorithm isO(N),
so givenI iterations, the nonlinear algorithm isO(NI). For
the two images shown in Figure 5, the nonlinear motion
algorithm took 0.18 seconds for 50 features and 4 iterations

on an 174 Mhz R10000 SGI O2.
For both motion algorithms, the memory requirements

for motion estimation are linear in the number of features
tracked. Since the number of features is much smaller than
the size of the images in pixels, the memory required for
motion estimation will be much less than that required for
feature detection and tracking.

2.4 Scale Computation Using Altimeter

The final stage of motion estimation computes the
remaining motion parameter, magnitude of translation,
from laser altimetry data. Depending on descent angle and
surface relief, one of two complimentary methods is used.

2.4.1. Motivation

Motion estimation using monocular imagery cannot
solve directly for the magnitude of translation, so an
external means must be used to recover this parameter. For
a spacecraft in orbit about a small body, there exist multiple
possible solutions.

One solution is to integrate the accelerometer
measurement in the spacecraft inertial reference unit to
determine position. The advantage of accelerometers is that
they present a completely onboard solution. Unfortunately,
because that come from integration of noisy acceleration
measurements, position measurements from accelerometers
are too inaccurate for precision landing. For example, if the
accelerometer measurement has an error of 10µg, the
position error can grow to the kilometer level in an hour.

The traditional approach is to use radiometric tracking
measurements from earth. This approach has the advantage
that it is well understood and uses equipment already on
board the spacecraft. However, radiometric tracking has
many disadvantages. First, it requires dedicated Deep Space
Network tracking which is expensive and at times difficult
to schedule. Round trip light time for tracking from earth
induces a large latency in any position measurements
(approximately 24 minutes for comet Tempel 1). At deep
space distances, radiometric tracking is not accurate enough
relative to the size of maneuvers needed to explore a small
body.

Another option is to perform radiometric tracking
between the orbiter and the lander during precision landing
[19]. This is a well understood and accurate technology.
However, it has some distinct disadvantages: it requires a
line of sight between the orbiter and lander; the orbiter
position must be known accurately; the lander must be
tracked from the orbiter; and additional equipment is
needed on the lander and orbiter.

In a similar vein, surface beacons in known position
deposited by the spacecraft before landing can be used for
position estimation. Positioning based on beacons can be
very accurate, however, if 3-D position is desired, then

q qδ+ 1=

T Tδ+ 1=

Σ a() A
1–

=

10

multiple beacons must be deployed and all beacons must be
in line of sight with the lander at all times during descent.
The major disadvantage of this approach is that the beacons
must deployed and anchored to the surface and the possibly
massive beacon deployment mechanism must be added to
the spacecraft payload.

As shown in Table 1, multiple missions have or are using
laser altimeters for science return and navigation. Table 1
also shows that as the design of laser altimeters progresses,
their size, weight and power consumption are decreasing
while there accuracy and speed are increasing. As shown
below, laser altimeters can also be used as a navigation
sensor by aiding the determination of the position of the
spacecraft. Laser altimeters give accurate range estimates
and, when combined with a descent imager, present a
complete on-board solution to 6-D body relative motion
estimation. A disadvantage of the laser altimeter approach
is that they have limited range (50 km for the NEAR laser
altimeter). However, near body operations is precisely when
accurate position estimation is needed the most, so this is
not a major issue. A laser altimeter is an additional sensor,
however, science return combined with navigational use
justify the addition. Based on the disadvantages of the other
available options, we determined that the use of a laser
altimeter was the most promising solution for scale
estimation.

Another promising but immature technology that could
be used for position estimation is automatic recognition of
small body landmarks for determination of absolute
position. The advantages of this approach are that it requires
no additional equipment (a camera is sufficient) and it is a
stand-alone, on-board solution. Currently, robust and
completely autonomous solutions to this problem have not
been developed, however many approaches appear
promising [9]. For this option to become a viable solution,
the landmark recognition and position estimation
algorithms will have to be efficient, accurate and robust.

2.4.2. Difference Scale Estimation

If images are taken as the spacecraft descends vertically
to the surface, or the surface has very little surface relief,
computation of translation magnitude is straightforward.
Laser altimeter readingsAI and AJ are acquired
simultaneously with each image. As shown in Figure 8, the
difference in altimeter readings is equal to the translation of
the spacecraft along the z-axis between images.
Consequently, the magnitude of translation is

(40)

For motion approaching horizontal,tz approaches zero,
Equation 40 becomes ill conditioned and difference scale
estimation will not work. Furthermore, if the spacecraft is
not descending vertically and the surface topography is
rough on order of the scale of translation then the difference
of altimeter readings will not accurately reflect the z
component of the translation. Once again, difference scale
estimation will not work. Fortunately a different, albeit
more complicated, procedure exists for computing scale in
these cases.

2.4.3. Structure-Based Scale Estimation

From the feature-based motion estimate, the scaled
depthsαi (Equation 27) to features in the scene can be
computed. Assuming, without loss of generality, that the
laser altimeter is aligned with the camera optical axis,
features in the center of the image will be at a depth
equivalent to the laser altimeter reading. Consequently, the
ratio of the laser altimeter reading to the scaled feature
range will be the magnitude of translation. This approach
requires only one altimeter reading, so it is not susceptible
to errors from changing surface relief. Furthermore, it does
not depend on nonzero translation along the z-axis. In fact,
structure-based scale estimation works better when the

T
AI AJ–()

tz
-----------------------=

Table 1: Laser Altimeters

mission name use date sample rate max range accuracy size mass power

Clementine Clementine
LIDAR[13]

1994 1 Hz 640 km 40 m 13x15x4 cma

+
17x18x36 cm

a. The Clementine LIDAR has two parts: the laser transmitter (first spec.) and the HIRES camera for receiver optics (second spec.).

1.2 kga

+
1.1 Kg

6.8 Wa

+
9.5 W

Mars Global
Surveyor

Mars Orbiter
Laser

Altimeter [17]

1999 10 Hz 786 km 2.0 m 50x50x75cm 25 kg 34W

Near Earth
Asteroid

Rendezvous

NEAR Laser
Altimeter [5]

2000 8 Hz 50 km 2.0 m 37x23x22cm 5kg 15W

DS-4/
Champollion

Laser Radar
Instrumentb

b. The LRI figures are design specifications based on a JPL internal design document for the scanning laser rangefinder being built for DS-4/Champollion.

2006 10,000 Hz 2 km 0.2m 20x10x10cm 2 kg 10W

11

spacecraft is descending at an angle with respect to the
surface because in this case, scene structure can be
estimated more accurately than for pure descent.

The procedure for structure-based scale estimation is to
first compute the feature based motion between images
along with the depth of the features in the image (a by-
product of nonlinear motion estimation). Assuming
alignment of laser altimeter with the optical axis, the
features near the center of the image will be geometrically
close to the surface patch that supplies the reading for the
laser altimeter (see Figure 8). Since it is unlikely that a
feature will correspond exactly to the image center, a few
(3-5) features closest to the image center are selected and
weighted interpolation is used to determine the scene depth
at the image centerαc

(41)

In the above equation, the feature depths are weighted by

which is proportional to the distance from the
image center; features closer to the image center will have
greater weight. The image-based scene depth at the image
center has the same depth as the altimeter reading taken
when the first image was acquired, so the magnitude of
translation is

(42)

A number of observations can be made about structure
based scale estimation. First, As the translation between
images approaches vertical, the structure estimates degrade,
especially near the optical axis (i.e., on the optical axis, the
displacement between features will be zero for vertical
descent - structure from triangulation cannot be computed).
Fortunately, vertical descent is precisely the motion where
difference scale estimation works best. The complementary
nature of these two scale estimation algorithms will be
explored further in Section 4. Second, for the altimeter
reading to be related to scene structure, a feature must be
located near the optical axis in the first frame.
Consequently, structure-based scale estimation will work
better when more features are tracked in order to guarantee
that a feature will be near the optical axis. Alternatively,
another approach is to always make the image center a
feature so that a depth value will always exist near the
altimeter reading. Since this approach requires that the
image center have sufficient structure for feature tracking,
which cannot be guaranteed, it was not attempted.

The magnitude of translation from laser altimetry when
combined with feature-based motion completes the 6 DoF
motion estimation of the spacecraft.

2.5 Multi-frame Issues

The algorithm presented above solves for 6 DoF motion
using feature tracking between two image frames. Given an
image stream (multiple images taken in a sequence), it is
possible to track features across multiple images; this leads
to faster and more robust feature tracking and ultimately
more accurate motion estimation. Consequently, when
estimating motion for an image stream, we track features
across multiple images which requires some minor
modifications to our algorithm.

The primary advantage of multi-frame feature tracking is
that features do not have to be detected for each frame. By
definition, the features that were detected in the first frame
will remain features, image locations that are easy to track,
for many images after they were detected. Consequently, a
feature detected in the first frame is tracked until the
appearance of the feature changes too much for continued
tracking (occlusion, passes out of field of view, large
viewing or illumination change). Eventually, too many
features will be eliminated for precise motion estimation, so
new features will have to be detected. In our

A
αj

Figure 8: Methods for estimating translation magnitude.

δA T

features

closest

AJAI

T

Difference Scale Estimation

Structure Scale Estimation

Tx

Tz

γ

scene
surface

scale

feature

αc

α j

uj vj,()

j
∑ 

  1
uj vj,()

j

∑ 
 ⁄=

uj vj,()

T
AI

αc
------=

12

implementation, features are added at key frames in the
sequence. The number of features added is such that the
total of the features still being tracked at the key frame and
those added equals the number of features tracked in the
first frame. For the results presented in this paper, key
frames occur every 4 images in the stream. Since features
do not have to be detected every image, but every key frame,
the average processing time per frame is reduced. Note that
with multi-frame tracking, the features for the current frame
could have been added at any previous key frame, so our
feature tracking data structures are designed to handle
arbitrary frame starting points for features.

Feature tracking across multiple frames is the same as
feature tracking across two frames with a few
modifications. First, the feature window (imageI) is taken
from the image where the feature was first detected and the
tracking window is taken from the current image (imageJ).
This will prevent feature drift by guaranteeing that the
feature window being tracked is the one originally detected.
Second, the feature tracking displacementd is initialized at
the feature tracking displacement computed for the previous
frame instead of being initialized to0. This will reduce the
number of iterations in for tracking each feature making
feature tracking more efficient.

If it can be assumed that the motion of the spacecraft is
smooth (C1), then the trajectory of the features through the
image stream will be locally linear (i.e., the feature
positions will lie along a line). This assumption leads to two
possible improvements to feature tracking. To define locally
linear, suppose that the image position of a feature in the
three most recent frames are ,

and . A feature track is
locally linear if

. (43)

whereΛ is an angular threshold that we set toπ/6. If a
feature track is not locally linear than it is likely that the
tracking is erroneous, so the feature is eliminated. This
feature filtering reduces the number of feature track outliers
beforemotion estimation making motion estimation more
robust. It also reduces the percentage of outlier feature
tracksε, so the number of feature track subsets that have to
be investigated during robust linear motion estimation
(Equation 17) is reduced leading to a reduction in the time
spent in the linear motion algorithm.

Given the smooth trajectory assumption, the position of
the features in the next frame can be predicted.
Extrapolating the notation from above, the predicted
position of the feature in the next frame can be
expected to be close to the linear extrapolation of the feature
positions in the previous two frames.

(44)

If the extrapolated position is used to initialize feature

tracking, then the feature track position will start out very
close to its true position. This will result in less iterations
and time spent during feature tracking.

Furthermore, given the smooth trajectory assumption, it
is possible to eliminate the robust linear motion estimation
algorithm altogether. Local linearity in feature tracks can be
used to eliminate outliers feature tracking errors. Instead of
the linear algorithm estimate, the motion estimated from the
previous frame can be used as the initial estimate for the
nonlinear motion estimation algorithm. With a way to
eliminate outliers and provide an initial estimate to the
nonlinear algorithm the linear algorithm is no longer
needed. However, to be safe, we still include the linear
motion estimation algorithm in our multi-frame
implementation.

Another advantage of tracking features across multiple
frames is that the disparity between the feature detection
and current image positions increases. As disparity
increases, the sensitivity of motion estimation to feature
tracking errors decreases, so the errors in motion estimation
will decrease. We show in Figure 12 that when modified to
compute motion between the initial and current frame, our
multi-frame algorithm is able to compute more accurate
motion estimates. To properly handle multi-frame motion
estimation, we need an algorithm that handles features
added at different key frames. We are currently
investigating this issue.

2.6 Discussion

The algorithm we have presented can be used to estimate
motion with respect to any proximal surface. Consequently,
it can be used for precision landing on comet nuclei.
asteroids and small moons. It can also be used for proximity
operations during rendezvous and docking between two
spacecraft. Another application is estimating the attitudinal
motion of a orbiter or satellite during precision pointing to
surface targets. Rotational motion is completely determined
from image-based motion estimation, so a laser altimeter is
unnecessary for this application.

One of the underlying assumptions of the algorithm is
that the surface being imaged has texture. Texture is needed
for feature detection and tracking. Comet surfaces are
expected to be rough at all scales, so shading variation due
to changing surface normal will provide adequate texture
for feature tracking. Asteroid surfaces will have some
regions of little texture, but because of cratering, there
should be sufficient texture in parts of the image for feature
tracking (see Figure 2). In other applications, the
texturedness of the surfaces to be imaged should be
guaranteed before this algorithm is selected for motion
estimation.

Our motion estimation works best when the spacecraft is
close to the surface being imaged. In general image based
motion estimation algorithms are more accurate when

pi 2– ui 2– vi 2–,()=
pi 1– ui 1– vi 1–,()= pi ui vi,()=

pi 2– pi 1––() pi 1– pi–()⋅
pi 2– pi 1–– pi 1– pi–

--acos Λ<

pi 1+

pi 1+ pi pi pi 1––()+=

13

differences in body shape or terrain height are observable
between image frames. This generally occurs when the
spacecraft is close to the surface. Another advantage of
being close to the surface is that the surface fills the field of
view, so features can be tracked in the entire image. For a
given camera field of view, the wider the spread in feature
tracks, the more accurate the motion estimation becomes.

In feature-based motion estimation, there are couplings
between translational and rotational motions. For example,
a rotation about theX axis will cause the features to move in
the image in much the same way as a translational motion
along theYaxis. This coupling cannot be avoid, however, it
can be detected. The covariance of the image-based motion
estimate (Equation 39) will encode this coupling, so that
when the motion estimate and covariance are incorporated
into the spacecraft guidance, navigation and control filter,
these dependencies will not bias the estimate of spacecraft
motion from all onboard sensors.

3 Results on Real Imagery

To test our motion estimation algorithm, we generated
two sequences of real imagery. First a comet nucleus analog
was created by a comet scientist at JPL. This analog is
rough at all scales and matte black, the expected
characteristics of comet nuclei. The analog has an
approximate diameter of 25 cm. We placed the analog on a
rigid stand and took two sequences of images as the camera
moved toward the comet analog. The first sequence which
we call descentwas with a 640x480 CCD imager, a 15
degree field of view lens. The second sequence called
approachwas taken with a 1024x1024 CCD imager and a
25 degree field of view lens. Both sequences were acquired
with the camera starting 80 cm from the comet analog; the
camera moved 1.00 cm toward the analog between each
image.

Ground truth for the image sequence motions were

obtained though camera calibration [20]. Each camera was
calibrated using a calibration target and as a by product of
the calibration procedure, the direction of translation was
computed. For the descent sequence, the true translation
direction is (0,0,-1), and for the approach sequence, the true
translation direction is (0.0096, -0.0033, -0.9999). Since the
cameras were rigidly fixed, there was no rotation in the
motion.

An altimeter reading was simulated for each image by
using the translation stage reading as the altimeter reading.
Using this data type, the scale of translation is know to the
accuracy of the translation stage, so no scale estimation
method is needed. In the future, an imaging setup with a
laser altimeter will be used to test the scale estimation
methods.

The results are presented in the Figure 9 through
Figure 13. For each sequence, motion is estimated using 50
or 500 features. At the top of each figure is shown the
feature tracks for the entire sequence. Different color tracks
correspond to the different key frames when the features
were added to the sequence; a key frame occurred every 4
frames. Next are shown the computed translation(tx,ty,tz)
and rotation angles(rx,ry,rz) of the motion computed for
each frame using the two stage motion estimation
algorithm. Following these is a plot showing the translation
error magnitude (vector distance between the true and
estimated translations) for each frame in the sequence. On
this plot, the dashed line corresponds to the expected
performance of the algorithm established using Monte
Carlo simulation (assuming perfect feature tracking) for the
imaging parameters and motion (See Section 4). Finally, the
rotation error magnitude (vector difference between
estimated and true rotation angles) is shown for each frame.
Again, the dashed line corresponds to the expected
performance of the algorithm established using Monte
Carlo simulation. Table 2 summarizes the results from the

Table 2: Motion estimation results.

sequence
number of
features

motion
estimation

stages

δTseq
(cm)

δRseq
(degrees)

processing
time

(seconds)

number of
frames

frame rate
(Hz)

δTsim
cm)

δRsim
(degrees)

descent 50 linear 0.044927 0.06376 6.24 25 4.01

descent 50 nonlinear 0.044966 0.0662209 13.1 25 1.90 0.0579763 0.0411912

descent 500 linear 0.033483 0.056666 31.61 25 0.79

descent 500 nonlinear 0.033615 0.056834 82.33 25 0.30 0.0169 0.0120

approach 50 linear 0.028092 0.024439 2.4 7 2.91

approach 50 nonlinear 0.023936 0.021443 3.94 7 1.77 0.0659696 0.0505746

approach 500 linear 0.01861 0.017992 13.42 7 0.52

approach 500 nonlinear 0.018938 0.15937 24.05 7 0.29 0.0221996 0.169442

14

0 5 10 15 20
frame

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

tr
an

sl
at

io
n

(c
m

)

Descent Sequence Translation Components

tx
ty
tz

0 5 10 15 20
frame

0.00

0.02

0.04

0.06

0.08

0.10

tr
an

sl
at

io
n

er
ro

r
m

ag
ni

tu
de

 (
cm

) Descent Sequence Translation Error Magnitude

sequence
simulation

0 5 10 15 20
frame

-0.10

-0.05

0.00

0.05

0.10

ro
ta

tio
n

(d
eg

re
es

)

Descent Sequence Rotation Components

rx
ry
rz

0 5 10 15 20
frame

0.00

0.05

0.10

ro
ta

tio
n

er
ro

r
m

ag
ni

tu
de

 (
de

gr
ee

s) Descent Sequence Rotation Errors

sequence
simulation

Figure 9: Motion Estimation for the Descent Sequence
with 500 features tracked.

500 Feature Tracks

0 5 10 15 20
frame

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

tr
an

sl
at

io
n

(c
m

)

Descent Sequence Translation Components

tx
ty
tz

0 5 10 15 20
frame

0.00

0.02

0.04

0.06

0.08

0.10

tr
an

sl
at

io
n

er
ro

r
m

ag
ni

tu
de

 (
cm

) Descent Sequence Translation Error Magnitude

sequence
simulation

0 5 10 15 20
frame

-0.10

-0.05

0.00

0.05

0.10

ro
ta

tio
n

(d
eg

re
es

)
Descent Sequence Rotation Components

rx
ry
rz

0 5 10 15 20
frame

0.00

0.05

0.10

ro
ta

tio
n

er
ro

r
m

ag
ni

tu
de

 (
de

gr
ee

s) Descent Sequence Rotation Errors

sequence
simulation

50 Feature Tracks

Figure 10: Motion Estimation for the Descent Sequence
with 50 features tracked.

15

Figure 11: Motion Estimation for the Approach Se-
quence with 500 features tracked.

0 2 4 6
frame

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

tr
an

sl
at

io
n

(c
m

)

Approach Sequence Translation Components

tx
ty
tz

0.0 2 4 6
frame

0.00

0.02

0.04

0.06

0.08

0.10

tr
an

sl
at

io
n

er
ro

r
m

ag
ni

tu
de

 (
cm

) Approach Sequence Translation Error Magnitude

sequence
simulation

0 2 4 6
frame

-0.10

-0.05

0.00

0.05

0.10

ro
ta

tio
n

(d
eg

re
es

)

Approach Sequence Rotation Components

rx
ry
rz

0 2 4 6
frame

0.00

0.02

0.04

0.06

0.08

0.10

ro
ta

tio
n

er
ro

r
m

ag
ni

tu
de

 (
de

gr
ee

s) Approach Sequence Rotation Error Magnitude

sequence
simulation

500 Feature Tracks

Figure 12: Motion Estimation for the Approach Se-
quence with 50 features tracked.

0 2 4 6
frame

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

tr
an

sl
at

io
n

(c
m

)

Approach Sequence Translation Components

tx
ty
tz

0 2 4 6
frame

0.00

0.02

0.04

0.06

0.08

0.10

tr
an

sl
at

io
n

er
ro

r
m

ag
ni

tu
de

 (
cm

) Approach Sequence Translation Error Magnitude

sequence
simulation

0 2 4 6
frame

-0.10

-0.05

0.00

0.05

0.10

ro
ta

tio
n

(d
eg

re
es

)

Approach Sequence Rotation Components

rx
ry
rz

0 2 4 6
frame

0.00

0.02

0.04

0.06

0.08

0.10

ro
ta

tio
n

er
ro

r
m

ag
ni

tu
de

 (
de

gr
ee

s) Approach Sequence Rotation Error Magnitude

sequence
simulation

50 Feature Tracks

16

four sequences and compares the motion estimation results
for the linear algorithm to the motion estimation results
obtained using the linear and nonlinear algorithm.

The results in Table 2, show that in general the addition
of the nonlinear motion estimation algorithm does not
improve the results of motion estimation all that much. This
is because for vertical descent, the motion computed using
the linear algorithm is very constrained, so the results are
very close to those obtained using the nonlinear algorithm.
Including the nonlinear algorithm in general doubles the
running time of the algorithm, so for the vertical descent, it
is probably a good idea to remove this stage from the
algorithm if running time is important.

Another general trend shown in Table 2 is that changing
from 50 features to 500 features improves the motion
estimation results. However, the relative improvement is
less than 50% in all cases while the processing time
increases by on order 600%. Obviously, diminishing returns
dictates that the number of features should be kept as small
as possible; in these example sequences, 50 features is
sufficient.

For the 50 feature descent sequence and the linear
motion estimation algorithm, the average translation error is
0.045 cm or 4.5% of the distance traveled. The average
rotation error is 0.063 degrees from no rotation. These error
values are similar to the expected motion errors (0.057 cm
and 0.04 degrees) from Monte Carlo simulation given the
parameters of the image sequence. The frame rate for this
sequence is 4.01 Hz on a 174 Mhz R10000 SGI O2.

For the 50 feature approach sequence and the linear
motion estimation algorithm, the average translation error is
0.028 cm or 2.8% of the distance traveled. The average
rotation error is 0.024 degrees for no rotation. These error
values are similar to the expected motion errors (0.066 cm
and 0.05 degrees) from Monte Carlo simulation given the
parameters of the image sequence.The frame rate for this
sequence is 2.91 Hz on a 174 Mhz R10000 SGI O2.

The approach sequence results are more accurate
because the resolution of the imager is greater which makes
pixel track errors smaller. However, the approach sequence
takes slightly longer to process because the larger image
requires more time to detect features.

Motion estimation accuracy increases as feature
disparity increases. To demonstrate this result, Figure 13
shows the expected motion estimation accuracy for the
approach sequence given that features are tracked across
multiple frames and the motion is estimated between the
current frame and first frame. This experiment shows that
for the approach sequence, as you increase the pixel
disparity, the motion estimation becomes much better. In
the last frame the median feature disparity is 23 pixels and
the translational motion estimation accuracy is 0.004 cm.
For a motion of 6 cm this is a 0.066% relative error. The
rotational motion error is 0.003 degrees for no rotation.

Figure 13: Motion estimated from the first frame for the
Approach Sequence. Shows as feature disparity in-
creases, the motion estimates improve.

0 2 4 6
frame

0.00

0.02

0.04

0.06

0.08

0.10

tr
an

sl
at

io
n

er
ro

r
m

ag
ni

tu
de

 (
cm

) Approach Sequence Translation Error Magnitude

0 2 4 6
frame

0.00

0.02

0.04

0.06

0.08

ro
ta

tio
n

er
ro

r
m

ag
ni

tu
de

 (
de

gr
ee

s) Approach Sequence Rotation Error Magnitude

0 2 4 6frame0

10

20

30

di
sp

ar
ity

 (
pi

xe
ls

)

Approach Sequence Feature Disparity

0 2 4 6
frame

0.00

0.02

0.04

0.06

0.08

re
la

tiv
e

tr
an

sl
at

io
n

er
ro

r
m

ag
ni

tu
de Approach Sequence Relative Translation Error Magnitude

Feature Tracks From First Frame

17

In general, these results show that highly accurate
motion estimation is possible using this algorithm.
Furthermore, the processing times indicate that on-board
image-based motion estimation is feasible. Given an order
of magnitude difference in processing speed between our
test computer (200 MIPS R10000) and a typical flight
computer (20 MIPS RAD6000), each frame will take only
a few seconds to process using the onboard CPU. This is
more than enough speed for small body precision guidance
and landing.

4 Performance Testing

Using Monte Carlo testing, the effect of sensor
parameters (e.g., field of view, resolution), spacecraft
trajectory (e.g., motion, altitude) and scene characteristics
(e.g., surface scale) on the accuracy of body relative motion
estimation can be determined empirically. We used these
tests to search for the “best” sensor parameters for precise
motion estimation and to predict the performance of the
algorithm given a predetermined set of sensor parameters.

4.1 Monte Carlo Simulation

The procedure for a single Monte Carlo trial is as
follows: First a synthetic surface is generated that
represents the terrain of the small body within the field of
view of the camera. An example of a synthetic surface is
given in Figure 14. Next, a feature position in the first image
is generated by randomly selecting a pixel in the image
(feature position in first image). The 3-D position of the
feature is found by intersecting its line of sight ray with the
synthetic surface. Since the position of the camera for the
second view is a known input, the 3-D point can be
projected into the second view to determine its pixel
position in the second image. Gaussian noise is then added
to this feature pixel position to simulate feature tracking
errors. This is repeated for however many features are
requested. From these feature tracks, 5 DoF motion is
estimated. Altimeter readings are computed by intersecting
the line of sight for the altimeter (the camera optical axis)
with the synthetic terrain, and computing distance between

the sensor origin and the surface intersection. Gaussian
noise is then added to the range value to simulate
measurement noise in the altimeter. Using this altimeter
reading, the complete 6 DoF motion is estimated.

The results of many Monte Carlo trials are used to
determine empirically the motion estimation accuracy. For
each trial, a new synthetic terrain is created so that
dependencies on surface shape do not appear in the
analysis. Since the ground truth motion is known, after each
trial, the error in translational motion and the error in
rotational motion can be computed. Statistics on these
errors (average, median, standard deviation) for many trials
constitute our estimates of motion accuracy.

This experiment assumes that features have been tracked
robustly (no outliers) and accurately between frames.
Feature tracking is excluded for two reasons: it depends on
scene appearance which is too varied and difficult to
parameterize; and previous studies have already modeled
the accuracy of feature tracking, so its performance and
accuracy are well understood [24].

For these tests some of the motion estimation parameters
were fixed. Imager resolution was fixed at 1024 because this
is the predicted resolution of low power space qualified
imagers that will be available in the near future. Field of
view was set to at 30 degrees because Monte Carlo
simulations for variable motion and field of view show that
30 degrees is the best all around field of view that balances
imager resolution, feature disparity and motion estimation
accuracy [7]. The spacecraft altitude was set to 1000 m
because this is a nominal altitude for the precision landing
phase of the DS-4/Champollion mission. The altimeter
range accuracy was set to 0.2 m following the specification
given for the DS-4 Laser Radar Instrument. Feature
tracking error was set at 0.17 pixels based on the analysis in
[24]. The feature tracking disparity was set at 20 pixels
because our experience has shown that it is reasonable to
track features this far using multi-frame tracking. Scene
surface scale is the absolute height variation between the
closest and farthest terrain points in the field of view of the
imager. The scene surface scale for generation of the terrain
map was set to at 20% of altitude above the surface or 200
m. Finally, the number of tracks was set at 500 to enable
highly accurate motion estimation without using an
unreasonable number of features given that motion
estimation time is always an issue.

The remaining parameters to investigate are the motion
of the spacecraft and the scale estimation mode used in the
algorithm.

4.2 Effect of Motion on Motion Accuracy

This investigation was performed to determine the effect
of different spacecraft motions on motion estimation
accuracies. To simplify this investigation, the space of
possible motions was broken into two groups: descent (pure

Figure 14: Example of a synthetic terrain used in Monte
Carlo simulations.

18

translational motion) and pointing (pure rotational motion).
Descent can be parameterized by descent angleγ (See

Figure 8), the angle between horizontal and the translation
direction of the spacecraft. Given the above parameters,
simulations showed that a translational motion accuracy of
0.22 m is expected independent of scale estimation mode
and descent angle. At a fixed pixel disparity, the distance
traveled between frames varies depending on the magnitude
of translation. For a horizontal motion (γ=90˚), a 20 pixel
disparity and 30˚field of view corresponds to a motion of 12
m. The motion error is then 0.22 m over 12 m or 1.8%. For
a descent angle ofγ=45˚ and a 30˚ field of view, a 20 pixel
disparity corresponds to a motion of 17 m resulting in a
motion error of 0.22 m over 17 m or 1.3%. Finally for
vertical descent (γ=0˚)and a field of view of 30˚, a 20 pixel
disparity corresponds to a 65 m motion. Thus the error is
0.22 m over 65 m or 0.34%.

By integrating this motion accuracy estimate from
multiple frames as the spacecraft descends to the surface an
upper bound on the expected horizontal landing position
accuracy can be obtained. Simulations showed that the most
accurate landing position occurs for the vertical descent
with a 10 degree field of view. In this case the landing
position accuracy is 3.6 meters. From a height of 1000
meters, this is an accuracy of 0.36% of the starting altitude.

To determine pointing accuracy we only investigated
rotations with axes perpendicular to the camera Z-axis since
rotations about the camera Z axis are unnecessary for
pointing to surface targets. For a 30˚ field of view, a pixel
disparity of 20 pixels corresponds to a rotation of 0.6˚ away
from the optical axis. Simulations showed that given these
parameters, a rotational motion estimation accuracy of
0.006 degrees or 1% of the rotational motion is expected.

4.3 Scale Estimation Mode

Descent angle and scene surface scale dictates which
scale estimation mode to use during descent. Simulations
were performed to determine at which descent angle the
transition between scale estimation modes should occur.
This angle is dependent on scene scale and is defined as the
angle where translation magnitude errors of the two modes
cross over.

The results of the simulation are shown in Figure 15.
Inspection of the graph reveals that structure scale
estimation should be used except when the surface is very
flat (scale < 25 m at 1000 m altitude or 0.25% of altitude) or
descent is very close to vertical (γ>88˚). Using this plot, it is
possible to determine which scale estimation mode to use
before scale estimation is performed. Descent angle is fully
determined from 5 DoF image-based motion estimation.
The scene scale can be determined before descent then
though 3-D modeling or analysis of laser altimeter readings.
Given this descent angle/scene scale data point, the scale
estimation mode can be can be looked up using Figure 15.

Figure 15 corresponds to a fixed set of imaging parameters,
so if the imaging parameters change, a new plot will have to
be generated.

5 Conclusion

We have developed and tested a software algorithm that
enables onboard autonomous motion estimation near small
bodies using descent camera imagery and laser altimetry.
Through simulation and testing, we have shown that image-
based motion estimation can decrease uncertainty in
spacecraft motion to a level that makes landing on small,
irregularly shaped, bodies feasible. Possible future work
will include qualification of the algorithm as a flight
experiment for the Deep Space 4/Champollion comet
lander mission currently under study at the Jet Propulsion
Laboratory. Current research is investigating the use of this
algorithm to aid 3-D modeling of small bodies for terrain
hazard assessment and comet absolute position estimation.

References

[1] A. Azarbayejani and A. Pentland. Recursive estimation of
motion structure and focal length.IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 17, no. 6, pp. 562-
575, June 1995.

[2] A. Benedetti and P. Perona. “Real-time 2-D feature detection
on a reconfigurable computer.”Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR’98), pp. 586-593,
1998.

[3] T. J. Broida, S. Chandrashekhar and R. Chellappa. Recursive
3-D motion estimation from a monocular image sequence.
IEEE Trans. Aerospace and Electronic Systems, vol. 26, no.
4, pp. 639-656, July 1990.

[4] D. Brownlee, P. Tsou, K. Atkins, C. Yen, J. Vellinga, S. Price
and B. Clark. Startdust: Finessing Expensive Cometary
Sample Returns.2nd Int’l Conf. Low-Cost Planetary
Missions, Laurel MD, IAA-L-0209, April 1996.

[5] T. D. Cole, A. F. Cheng, M. Zuber and D. Smith. The laser

0 100 200 300 400
scene scale (meters)

80

82

84

86

88

90

de
sc

en
t a

ng
le

 (
de

gr
ee

s)

Scale Estimation Mode Partitioning

Structure Scale Estimation

Difference Scale Estimation

Figure 15: Scale Estimation Mode Partitioning from
Monte Carlo Simulation.

19

rangefinder on the Near Earth Asteroid Rendezvous
spacecraft.2nd Int’l Conf. Low-Cost Planetary Missions,
Laurel MD, IAA-L-0910, April 1996.

[6] R. Hartley. “In Defence of the 8-point algorithm.”5th Int’l
Conf. on Computer Vision (ICCV’95), pp. 1064-1070, 1995.

[7] A. Johnson. Monte Carlo experiments combining descent
camera imagery and laser altimetry Web Reference: http://
telerobotics.jpl.nasa.gov/people/johnson/ABLE/project/
motion/monteCarlo.html, 1998.

[8] J. Kawaguchi, T. Uesugi, A Fujiwara and H. Matsuo. The
Muses-C, world’s first sample and return mission from a near
earth asteroid Nereus.2nd Int’l Conf. Low-Cost Planetary
Missions, Laurel MD, IAA-L-0202, April 1996.

[9] B. Leroy and G. Medioni. Crater detection for autonomous
landing on asteroids. Submitted toIEEE Computer Vision
and Pattern Recognition, 1999.

[10] H. Longuet-Higgins “A computer algorithm for
reconstructing a scene from two projections.”Nature, vol.
293, pp. 133-135, September 1981.

[11] L. Matthies.Dynamic Stereo Vision.Ph.D. Thesis, School of
Computer Science, Carnegie MEllon University, 1989.

[12] J.K. Miller, B.G. Williams, W.E. Bollman, R.P. Davis, C.E.
Helfrich, D.J.Scheeres, S.P. Synott, T.C. Wang, and D.K.
Yeomans. “Navigation analysis for Eros rendezvous and
orbital phases.”Journal Astronautical Sciences, vol. 43, no.
4, pp. 453-476, 1995.

[13] S. Nozette et al. The Clementine mission to the Moon:
Scientific Overview.Science, vol. 266, pp. 1835-1939, 1994.

[14] W. Press, S Teukolsky, W. Vetterling and B. Flannery.
Numerical Recipes in C, 2nd Edition.Cambridge University
Press, Cambridge, UK, 1992.

[15] J.E. Reidel, S. Bhaskaran, S.P. Synott, W.E. Bollman and
G.W. Null. “An autonomous optical navigation and control
system for interplanetary exploration missions.”2nd IAA
Int'l Conf. on Low-Cost Planetary Missions, Laurel MD,
IAA-L-506, 1996.

[16] J. Shi and C. Tomasi. “Good Features to Track.”Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR’94),
pp. 593-600, 1994.

[17] D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W.
Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C.
Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury.
Topography of the northern hemisphere of Mars from the
Mars Orbiter Laser Altimeter.Science, vol. 279, pp. 1686-
1692, March 13th, 1998.

[18] R. Szeliski and S.B. Kang. Recovering 3-D shape and motion
from image streams using non-linear least squares.Journal
Visual Communication and Image Representation, vol. 5, no.
1, pp 10-28, March 1994.

[19] S. W. Thurman, C. D. Edwards, R. D. Kahn, A.
Vijayaraghavan, R. C. Hastrup and R. J. Cesarone.
Spacecraft navigation at Mars using earth-based and in situ
radio tracking techniques.World Space Congress 1992,
International Astronautical Federation, Washington DC,
1992.

[20] R. Tsai. A versatile camera calibration technique for high-
accuracy 3D machine vision metrology using off-the-shelf
TV cameras and lenses.IEEE Journal Robotics and
Automation, Vol. RA-3, No. 4, pp. 323-344, August 1987.

[21] .J. Weng, T. Huang and N. Ahuja. “Motion and structure
from two perspective views: algorithms, error analysis and
error estimation.” IEEE Pattern Analysis and Machine
Intelligence, vol 11, no. 5, pp. 451-476, 1989.

[22] J. Weng, N. Ahuja and T. Huang. “Optimal Motion and
Structure Estimation.”IEEE Pattern Analysis and Machine
Intelligence, vol 15, no. 9, pp. 864-884, 1993.

[23] M.D. Wheeler and K. Ikeuchi. Iterative estimation of rotation
and translation using the quaternion. Carnegie Mellon
University School of Computer Science Technical Report
CMU-CS-95-215, December 1995.

[24] Y. Xiong and L. Matthies. Error analysis of a Real-Time
Stereo System.Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR’97), pp. 1087-1093, 1997.

[25] Z. Zhang. “Determining the epipolar geometry and its
uncertainty: a review.”Int’l Jour. Computer Vision.1997.

Acknowledgments

We would like to thank Jean-Yves Bouguet for
discussions on motion estimation. We would also like to
thank Jackie Green for providing the comet analog.

	1 Introduction
	2 Motion Estimation
	3 Results on Real Imagery
	4 Performance Testing
	5 Conclusion

