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Abstract spacecratft attitude and position are computed.

The Near Earth Asteroid Rendezvous (NEAR), a current
mission that will rendezvous with asteroid Eros 433 in
February 2000, uses optical navigation extensively for orbit
determination and small body 3-D modeling [12]. Their
base-lined navigation technigque will combine manually
designated landmarks from imagery of Eros and
radiometric data to compute and control the trajectory of the
orbiter. Simulations show that after a week of ground-based
processing, the orbit of the NEAR spacecraft can be
determined to 100's of meters from an orbit of 500
kilometers. Without optical navigation, the accuracy of the
orbit determination from radiometric data would be closer

Comets and asteroids play a prominent role in NASA's
roadmap for solar system exploration because they hold
answers to questions about the origin of the solar system.
NASA is planning multiple small body missions that range
in scope from near body flybys to complete sample return
[4][8][12][15]. This paper presents an algorithm for
autonomous onboard motion estimation that will enable the
precision guidance and landing necessary for small body
sample return. Our techniques are based on automatic
feature tracking between a pair of descent camera images
followed by two frame motion estimation and scale recovery

“Sif‘g Iasera_lti_metry Qata. T_he output ofog_ralgorithm is_an to 5 kilometers. The NEAR mission will clearly
estlmgte of rigid motion (atutude_and pc_)smon)_and motion demonstrate the effectiveness of optical navigation.
covariance between frames. This monon estlmate_ can beHowever this ground-based paradigm will not map to
passed directly to the space_craft gu@ance navigation and missions'involving small body exploration and landing.
control system to enable rapid execution of safe and precise Small body exploration requires multiple precise target

trajectories. relative maneuvers during a brief descent to the surface. The
1 Introduction round trip light time prohibits the determination of the
) i ) necessary trajectory control maneuvers on the ground.
Due to the small size, irregular shape and variable gy rihermore, typical onboard position sensors do not have
surface properties of small bodies (see Figure 2), accuratgy,o accuracy needed for small body landing (e.g., during a
motion estimation is needed for safe and precise small bodygm || hody descent taking a few hours accelerometer errors
exploration. Because of the communication delay induced,,;, grow to the kilometer level). However, the required
by the large distances between the earth and targeted small

bodies, landing on small bodies must be done
autonomously using on-board sensors and algorithms.
Current navigation technology does not provide the
precision necessary to accurately land on a small bodies, sg
novel motion estimation techniques must be developed.
Computer vision offers a possible solution to precise
motion estimation.

Historically, optical navigation has been used for orbit
determination and instrument pointing during close fly-bys
of small bodies and moons of the outer planets. Generally,
this has been implemented by ground-based image
processing to extract centroids of small reference targets

like asteroids and moons from which target relative Figure 1:Image-based precision landing. As the space-
craft descends to the surface, images and laser altime-

try are processed to determine the motion of the
spacecraft.

The work described in this paper was carried out at the Jet Propulsiol
Laboratory, California Institute of Technology, under contract from
the National Aeronautics and Space Administration.



positional accuracies can be obtained during small bodyaccuracies of 0.006° when off axis pointing of 0.6° are
landing if autonomous real-time optical navigation methods possible. Finally in Section 5 we present conclusions.
are developed. . . .
The Deep Space 1 mission as part of the New 2 Motion Estimation
Millennium Program is flying an autonomous optical  Motion estimation from images has a long history in the
navigation technology demonstration. The DS-1 machine vision literature. The algorithm presented in this
AutoOpNav system will use onboard centroiding of paper falls in the category of two-frame feature-based
reference asteroids for autonomous navigation during smallmotion estimation algorithms. To obtain complete 6 DOF
body fly-bys [2]. They expect to obtain automatic position motion estimates, our algorithm is augmented by altimeter
estimates with accuracies on order of 100 kilometers. Formeasurements for scale estimation.
scientific instrument pointing purposes, this accuracy is  Once the spacecraft sensors are pointed at the small body
sufficient. Controlled small body landing will require much  surface, our algorithm works as follows (see Figure 1 for a
better position and motion estimation accuracies. pictorial description). At one time instant a descent camera
Furthermore, since the appearance of the small body isimage and a laser altimeter reading are taken. A short time
variable, small body landing cannot always rely on |ater, another image and altimeter reading are taken. Our
reference landmarks for navigation. The DS-1 AutoOpNav algorithm then processes these pairs of measurements to
system will demonstrate autonomy and computer vision in estimate the rigid motion between readings. There are
space, however for small body landing a more versatile andmultiple steps in our algorithm. First, distinct features,
accurate system is required. which are pixels that can be tracked well across multiple
This paper describes a fully autonomous and onboardimages, are detected in the first image. Next, these features
solution for accurate and robust motion estimation near dare located in the second image by feature tracking_ Given
proximal small body. Our techniques are based on these feature matches, the motion state and covariance of
automatic feature tracking between a pair of imagesthe spacecraft, up to a scale on translation, are computed
followed by two frame motion estimation and scale ysing a two stage motion estimation algorithm. Finally the
recovery using laser altimetry data. The output of our scale of translation is computed by combining altimetry
algorithm is an estimate of rigid motion (attitude and ith the motion estimates using one of two methods which

position) and motion covariance between frames. This depend on the descent angle. The block diagram for motion
motion estimate can be passed directly to the spacecrafestimation is shown in Figure 3.

guidance navigation and control system to enable rapid i
execution of safe and precise trajectories. 2.1 Feature Detection

Therest of the paper is organized as follows. In Section 2 The first step in two-frame motion estimation is the
we describe in detail our complete motion estimation exiraction of features from the first image. Features are
algorithm. In Section 3 we present tests on real data whichpjxe| |ocations and the surrounding image intensity
show motion estimation rates of 4 Hz with positional nejghborhood (call this an image window) that can be
accuracies of 4.5% of the distance traveled and attitudinalyracked well across multiple images that may under go
accuracies of 0.06 degrees. In Section 4 we describe a set Ofpitrary, but small, changes in illumination or viewing

tests which are used to predict the performance of thegijrection. A qualitative definition of a good feature is an
algorithms. Using this simulation, we show positional jmage window that has strong texture variations in all
accuracies of 0.22 m when descending 65 m from an gjrections.

altitude of 1000 m, horizontal landing position accuracies  fFeature detection has been studied extensively and
of 3.6 m when descending from 1000 m, and rotational multiple proven feature detection methods exist.
Consequently, we elected to implement a proven feature
detection method instead of redesigning our own. Since
processing speed is a very important design constraint for
our application, we selected the state of the art feature
detection algorithm of Benedetti and Perona [2]. This
algorithm is an implementation of the well know Shi-
Tomasi feature detector and tracker [16] modified to
eliminate transcendental arithmetic. Although they
ultimately implemented their algorithm in hardware on a
reconfigurable computer, their algorithmic speed
enhancements also decrease the running time of software
implementations.

Asteroids

Comet Halley

Figure 2: Small bodies.



2.1.1. Shi-Tomasi-Kanade Feature Detection

The theoretical derivation of their feature detector is
explained fully in [2]; we will detail our software

Consequently, we can speed up feature tracking by using a
random search strategy instead of exhaustive search while
still guaranteeing that the required number of features are
detected. Suppose thBl features are needed for motion

implementation of this algorithm so that the necessary estimation. Our detection algorithm selects a pixel at

computations are apparent. Lgp,q) be function defining
image intensity for an image. We would like to determine if
an image window containingl pixels centered on pixgl=

random from the image (uniform distribution in row and
column directions). It then computes the image derivatives
(unless they have already been computed from a previous

(p,q)is distinctive enough to be considered a feature. First feature detection) and ti@matrix for a neighborhood d¥l

form the matrix

G (1)

M k\2 v k k
Z (1p) Z Iplg
= |k=1 k=1 = |2
M k k M ky2 b
Iolg z (Ig)
k=1
from the partial derivatives of image intensity and I
computed using finite differences

I(p+1,q)—1(p—-1,
Ip(p)=(p q)z(p q

@)

I(p,g+1)-1(p,q-1
o(p) = 2.0+ D=1 (.a=1)

The criterion for the image pixel to be a feature is that the
two eigenvalued,; andA, of G be greater than a threshold
At (i.e., A,>A; > A, ) As shown in [2], this requirement is

the same as the following
(a=A)(c=A)>0 a>\;

3)

pixels around the pixel. Next, the test in Equation 3 is
applied to the pixel. If the pixel passes the test, it becomes a
detected feature. This procedure is repeated Nrfghtures

are detected.

2.1.2. Processing Issues

The running time of the randomized detection algorithm
depends on the number of features required, and the number
of pixels in the scene which pass the feature detection
threshold. In general we have found that the randomized
search algorithm increases the running time of feature
detection by an order of magnitude over traditional
exhaustive search. In Figure 4 a comparison of the best 50
features selected in an 640x480 image (top) using
exhaustive search versus 50 features selected using our
randomized algorithm (bottom) are shown. The exhaustive
search algorithm took 11.19 seconds while the randomized
algorithm took 0.29 seconds to compute on an 174 Mhz
R10000 SGI @, As the figure shows, the features selected

Surfaces of celestial bodies generally appear highly by the random search algorithm occur in similar image
textured(ref], so good features to track are expected t0 be5.4iions as those features selected using exhaustive search

plentiful. Usually feature detection algorithms exhaustively

indicating that random search is detecting appropriate

search the image for every distinct feature. However, Whenfeatures in highly textured areas of the image

the goal is motion estimation, only a relatively small
number of features need to be tracked (~100).
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Figure 3: Block diagram for motion estimation.

The majority of the memory required for feature tracking
come from the 2-D character array for storing the image
(assuming an 8 bitimage) and two 2-D integer arrays for the
image derivatives. For a 1024x1024 imager the memory
requirement is 9 MB of RAM. At the expense of increased
processing time, the image derivatives can be computed
from the image for each pixel in every window investigated
for features. This will eliminate the need for the image
derivative arrays and will reduce the memory requirements
to 1 MB.

There are two parameters in feature detection: the
number of pixeldvl comprising the window in which th&
matrix is computed; and the threshold on the eigenvajue
above which a pixel is considered a feature. For
convenience, the window around a pixel is square. In
Figure 4, the window is 5x5, skl=25. In general, the size
of the window will dictate the scale of the features detected.
Small windows will detect precisely localized small scale
features, but they are sensitive to image noise. Larger
windows will detect large scale features with less location
accuracy, but will be less susceptible to noise. Since we are



using feature detection for motion estimation, the precise and the result is set to zero. After linearizing the resulting
localization of features as well as rapid processing time is system by truncating its Taylor expansion, the system of
very important. Therefore when selecting a valueNomwe equations

attempt to make it as small as possible while still obtaining Gd=e (5)
accurate feature detection and tracking. Automatic methodsyith G given by Equation 1 anelgiven by

can be developed, but currently the user $é¢tbased on

feature tracking performance. M K K K
SinceA, is a threshold on the eigenvalues of matrix made Z ((P) =3 (P)Tp(P)
from theM additions of pixel derivative products, it will be e= |kt (6)
proportional toM. To remove this dependence, we scgle Z (I k( ) _Jk( )| k( D)
by M which makes\; depend only on the texturedness in the e} a

image. Since the texturedness of the scene does not Varl.n pe solved for the feature motidin
greatly for precision landing), will only have to be set
once for each small body. For the features in Figurg 4,
was set to 2500. Automatic methods requiring little
additional computation can be developed for setpdut
currently the user sets it based on feature detection

Because of the linearization, the solution to Equation 5
does not minimize Equation 4 exactly. However using
Equation 5, a Newton-Rhapson style iterative minimization
can be used to solve for the feature motion exactly. The
procedure is to first solve Equation 5 fdg (G ande are

performance. constructed assumingl = 0). Then iteratively solve
2.2 Feature Tracking Equation 5 ford; with e replaced by
The next step in motion estimation is to locate the Mo K K
features detected in the first frame in the second frame. This > ((p) =3 (p+di_))I(p)
procedure is called feature tracking. As with feature g = k=1 @)

M

detection, there exist multiple methods for feature tracking z (Ik( D) Jk(p+ d ))Ik(p)
- i—-1//'q
k=1

in the machine vision literature. Feature tracking can be
split in to two groups of algorithms: correlation based
methods[11] and optical flow based methods [16].
Correlation based methods are appropriate when the motion
of features in the image is expected to be large. For small
motions, optical flow based methods are more appropriate
because in general they require less computation than
correlation methods We have chosen an optical flow based
method for feature tracking because in our application of
precision landing, we know a-priori that the motion
between image frames will be small. Furthermore, our
selected method of feature detection is derived from optical
flow based feature tracking; the features that are detected
are exactly the features that give the best results for feature
tracking based on optical flow.

We use the Shi-Tomasi-Kanade feature tracker which
seeks to minimize the intensity differeneebetween two
imaged andJ

until d; changes very little. Sinag is a floating point value,

M
k K, 1\2
e= > (F(p+d-17(p)) 4)
k=1
over the space of possible feature image translatigmshe
vicinity of the feature at pixel locatiop in imagel. To
minimize Equation 4, it is differentiated with respectdo

1. Correlation methods requi@M?) multiplications per feature while optical
flow methods requir®(SM)multiplications per feature whef&is the number

of steps required to reach the local minimum of the SSD intensity surface. Intu-
itively, Swill be on ordeM¥2because it is related to the distance between the Figure 4: Detected features. Exhaustive search (top) and
pixel and the intensity local minimum. This resultsme3/2) multiplications ) ’

per feature for optical flow based feature tracking. random search (bottom).




constructingg requires bilinear interpolation of imagde arrays for the gradients of the first image. The total memory
For example, if we would like to determine the intensity of for 1024x1024 images will be 10 MB with the gradient
imageJ at floating point image coordinatps [p,q]T images or 2 MB without the gradient arrays.

(1-p)(1-9)3(p @+ p(1-g)(p*+1L.a)* ® 2.3 Two Frame Motion Estimation
(1- P)gJ(B g+1)+ 99J(9+ 1,g+1)
wherex represents the flooroéndx = x—x .

J(p.v) =
The motion between two camera views can be described
by a rigid transformatiofR, T)whereR encodes the rotation
between views andl' encodes the translation between
views. Once features are tracked between images, the

The running time of feature tracking @(MN) whereN mot?on of the camera can be estirr_]ated by solving fo_r the
is the number of features being tracked aMds the size of ~ Motion parameters that, when applied to the features in the
the window used for tracking. The size of the window used firstimage, bring them close to the corresponding features
in feature tracking does not have to be the same as the siz&" the second image. o
of the window used in feature detection. In fact, for robust [N our algorithm, motion estimation is a two stage
feature tracking, the window should be large enough that it Process. First an initial estimate of the motion is computed
contains the location of the pixel of the feature in the second USing a linear algorithm. This algorithm is applied multiple
frame. With large feature displacements between images, ifimes using different sets of features to eliminate feature
may be necessary to increase the size of the window usedrack outliers and determine a robust LMedS estimate of
for tracking to a value greater than that used for feature Motion. The result of th_|s algorlthm is then used as input to
detection. For the feature tracks shown in Figure 5, the size? More accurate nonlinear algorithm that solves for the
of the window is 7x7 and the median displacement betweenMotion parameters directly. Since an good initial estimate is
features is 2.35 pixels; only 20 of 50 tracked features areNe€ded to initialize any nonlinear feature-based motion
shown for clarity. Tracking of these 50 features took 0.08 estimation algorithm, this two stage approach is common
seconds on an 174 Mhz R10000 SGI O [22]. Output from the nonlinear algorithm is the estimate of

The memory requirements for feature tracking are two the five motion parameters and their covariance. Our

character images, and if desired for speed, two integeralgorithm assumes that the camera taking the images has
been intrinsically calibrated (i.e., focal length, radial

distortion, optical center, skew and aspect are all known).
Output from the nonlinear algorithm is the estimate of the
five motion parameters and their covariance.

A fundamental short coming of all image-based motion
estimation algorithms is the inability to solve for the
magnitude of translational motion. Intuitively the reason for
this is that the algorithms cannot differentiate between a
very large object that is far from the camera or a small
object that is close to the camera; the camera does not
convey information about scene scale. Consequently, the
output of motion estimation is a 5 DoF motion composed of
the a unit vectorT, = T/|T| describing the direction of
heading and the rotation matrik between views. As is
shown in the next section, laser altimetry can be combined
with 5 DoF motion estimation to compute the complete 6
DoF motion of the camera.

2.2.1. Processing Issues

2.3.1. Robust Linear Motion Estimation

The first stage of motion estimation uses a linear
algorithm to compute the motion between views[10]. Since
the linear algorithm has a closed form solution, motion can
be computed quickly. However, the linear algorithm does
not solve for the motion parameters directly, so its results
will not be as accurate as those obtained using the nonlinear
algorithm. Our linear algorithm is an implementation of the
algorithm presented in [21] augmented by normalization

Figure 5: Tracked features. First image (top) and second
image (bottom).



presented in [6] for better numerical conditioning. To filter N N
out possible outliers in feature detection, we use a robust 0= < Z u; v=2 z v,
' 17k 0 -0/ N. ! N !

linear motion estimation algorithm based on least median of ~ _ i=1 =1 gy
Q=] 0 Lk-wkK (14)

squares[25]. Below we detail the computations in the N 5 5
algorithm; for a more complete description please see 0 0 1 k=% A/Z((Ui—ﬂ) +(v;=9)")
[6][21][25]. =1

First, the homogenous coordinates of each feature areEach u; is replaced withi'; = Qu';  using a similarly
determined by projecting them onto the unit focal plane. defined matrbQ". - _
This projection will depend on the lens, imager, and camera 10 solve Equation 13 the matrix
model used. A simple model for the Fransformatmn of a 0,0, 0,0, 0y 0,0, 9@, 0 0, ¥, 1
feature at pixel location(p;,g) to its homogenous A = (15)

coordinatesy; is L
OOy OgV'y Oy Oy UV U Oy Wy L

u i - P is created. The solutidmto min| Ah| is the unit eigenvector
U = : _ ) of ATA associated with the its smallest eigenvalue. This
: Vi G~ Cq eigenvalue problem can be solved using standard
1 sf algorithms like thgacobi  algorithm from [14]. Fromh,
1 Q andQ', the essential matrik is computed using
where(Cp,,Cy) is the center of the camera in pixel unitss b h h
i i i " 17477
the focal length of the camera in pixel units asds the T
aspect ratio of the pixels. This model assumes no radial =B [El E; Eej = ~2Q"|h, hg hgl Q. (16)
distortion in the camera. More sophisticated models that h hg hg

include radial distortion are used when necessary [20].
If u; is the homogenous coordinates of featuie the
first image then letu; be the homogenous coordinates of

The robust linear motion algorithm uses the above
equations and LMedS to find a solution to Equation 13 that
. . X ) is not influenced by outliers. The procedure, which is the
the feature in the sec_ond Image. The linear algorithm is o5 e 4 the Least Median of Squares method for computing
_based om the constraint _that the optical centers of th? WO, robust estimate of the fundamental matrix in [25], is as
Images and_ the_- 3-D location .Of the featur_e point must lie on follows. A subset of 8 feature tracks (the minimum number
a plane. Thiepipolar constraintan be written as of points required) is selected at random from the set of all

g = UiEy =0 (10) feature tracks. An estimate of the essential matrix is then
whereE is called the essential matrix and computed using this subset and Equation 14 through
E=[TJ,R (11) Equation 16. Next, the epipolar errgifrom Equation 10 is

computed for all feature tracks, and the medégyrof these
errors is determined. If the median epipolar error for this
0 X3 X, subset is less than the median epipolar error determined
[(Xq) X, x3)T]X = x3 0 x| (12) from a]l of thg pre\{iously sglected _subsets, the current
essential matrix and its associated epipolar error become the
best 8-point estimate for the essential matrix.
Equation 10 will hold for all features, but in the presence This process is repeated for a fixed numivesf subsets
of feature position noise, it will not hold exactly. The linear that depends on the probabilityof a sample free of outliers
algorithm utilizes these constraints and multiple features to
solve forE by minimizing
N
min z u;Eu, (13)
i=1
Using Equation 11, it then solves for the motion parameters.
To provide numerical stability [6], the homogenous
coordinates from each image are first translated and scaled
independently so that their centroid is (0,0,1) and their
mean distance from the origin is/2 . This can be
accomplished by replacing eagfwith 4; = Qu; where

where[ ], signifies the cross product matrix

X5 X, 0

X=(x,y.2)

Figure 6: Unit focal length imaging geometry. World
coordinate origin O is on image plane and optical cen-
ter Cis 1 unit behind image plane.



being selected and the percentage of outlier feature teacks 2.3.2. Nonlinear Motion Estimation

in the set of feature tracks
log(1 —T11) Robust linear motion estimation serves two purposes: it

8 A7) provides an initial estimate of the 5 DoF motion between
log(1-(1-¢) ) views and it detects and eliminates feature track outliers
For our experiments, we sat= 0.99 anct = 20% resulting '

. . ; The nonlinear algorithm takes the initial linear estimate of
in the selection ofr=26 subsets (independent of the number the motion and refines it by minimizing an error term that is
of feature tracks).

o the best 8-point estimate of th tial matrix i a function of the motion parameters and the outlier-free
nce the best o-paint estimate otthe essential MatrX IS¢e 54 v6  tracks. There exists many nonlinear motion

founi,tia?n?d?rlitl(?rt}? | step Ir?tireiqrﬁlrter?xto i']stlrr:a;ef:h?nroltl) u?testimation algorithms in the vision literature. Instead of
essential matrix. the essential matrix computed from afl o starting from scratch, the nonlinear algorithm we have

:Eg :ce)sfjusrtes:;(:cik;rc?fctg/igtjiglr?riz Sgr\;e Stee%n removed. I:'rSt’developed combines the attractive elements of multiple
P algorithms to produce an algorithm that is computationally
o, = 1.482(%14, Nis% (18) effici.e.nt, numerically stable and accurate. For r_1um_erica|
stability, we use the camera model parameterization of
Next, outliers are detected by finding feature tracks whoseAzarbayejani and Pentland[1]. For highly accurate motion
square epipolar errors (using the best 8-point estimate of theparameter estimation we use the Levenberg-Marquardt
essential matrix) are greater thanso,)> . Finally, the algorithm as proposed by Szeliski and Kang[18]. Finally,
robust essential matrix is computed using all feature tracksfor computational efficiency, we remove the scene structure
that are not outliers according to the above criterion. This from the nonlinear minimization as suggested by Weng et
final estimate is the best robust estimate of the essentiakl. in [22].

matrix because it takes into account all feature tracks while  Before we can express the error function, we need to
still eliminating feature track outliers. detail the motion parameters over which the minimization
The next stage in linear motion estimation is to extract will take place. First of all, the motion between frames is
the motion parameters from the essential makixBy presented as a translation and rotation p@:T) To
manipulating Equation 13, it can be shown tfiatis the  simplify the parameter estimation, we represent the rotation
solution to min|| ETT5|| which is the unit eigenvector with  with a unit quaterniond = fqo d; 9, q;j where the
smallest eigenvalue of the matise’ . Using the constraint rotation matrix in terms of a unit quaternion is
that the scene must be in front of the camera (positive z), the

m=

sign of the translation can be determined. If q0+qf—q§—q§ 2(q,0,-dpa3) 2(a;a3+dpdy)
" 4 = 2 2 2 2
IZ(TSX”I) HEu) <0 (19)  R(® = | 2(q,0,+ agag) do- +d5—0l5 2(apa5-0gay) |22)
ion i 2 2 2 2
thenT O —T, where the summation is over a few randomly 2(0703-0g0y) 2(0y0g+dgy) do—0] 0y + a3

selected 3-D points to ensure robustness to noise. ) ) )

Finding the solution to the rotation matriR is more ~ 'N€ translation is represented by a unit vector
involved. Rearranging Equaton 11 results in | = [TX_ Ty Tz] - Together the unit quaternion and unit
RT[—TS]X = E'; given that there exists noise in the feature ransiation comprise the parameter s:ate vector
tracks,R can be f(?undTby solvmgT a= [qo 0y 0y 03 Ty T, Tz] (23)

m'”"(R [-Tdl,-E )" (20) Nonlinear motion estimation attempts to minimize the
subject toR being a rotation matrix. Equation 20 can be image plane error between the features in the second view
solved forR" as follows: Let and the projection of the features in the first view into the

C = [c c C] - [T second view given the motion betwgen frames. In the
1-2™~3 SX photogrammetry, this technique is called bundle

D = [Dl D, D3] - g adjustment. If the unit focal coordinates (dejflned by

(21) Equation 9) of the features in imagereu; = [Ui Vi] and
3 T U = [Ui' v/| inimage], then the image plane error is
B=Y B'B, B = 0 (Ci-Dy) ca) = Y |u-fu a)llz (24)
£ D,-C; [D;+Cjl, Al i
then the eigenvector corresponding to the smallestWheref represents the projection of the featurgs  into
eigenvalue oB is the unit quaternion associated witliR". ~ image J given the motiona. Correct image projection
Equation 22 can then be used to transform between thg'®duires knowledge of the depth to a feature and a
quaternion and matrix representation&Rof perspective camera model. Using the model of

Azarbayejani and Pentland [1], if the (unknown) feature



depths from the image plane a# then the relation
between unit focal feature coordinates and 3-D feature
coordinates is

(25)

The features in imagé are transformed into imagé
according to

=[xy, z]T = R(Q)X +T. (26)

By comblnlng Equation 25 and Equation 26, the feature
depths [z z] can be computed through triangulation by

o] -

assuming that the translation between views is nonzero[21].
The camera model given the imaging geometry, shown

in Figure 6, is
f(uj,a) = M

Combining Equation 25 Equation 26 and Equation 28
results in a complete definition of Equation 24.

To estimate the motion parameters, we minimize
Equation 24 using the Levenberg-Marquardt algorithm for
nonlinear minimization. This approach was also used by

(27)

1

T+7 (28)

g -
a—_I_f(ui,a) aX,f(ul,a) (34)
From Equation 28
0 111 ° _(1fz)2
1+7 (1+z')2

The technique presented in Wheeler and lkeuchi [23] can be

used to simplify jacobian of rotation by minimizing about

the identity quaterniog,. Equation 26 can be rewritten as
X' = R(q)R(@)X+T = R(q)X+T (36)

using the fact thaR(q) is the identity andX = R(q)X
Following the derivation in [23],

) ) ) foo = 2y
a_qx = ﬁqu:qu(Q)x = a—quq:qlx =[0-2z o 7)
02y -2x O

The advantage of this form of the jacobian of rotation is that
is enforces the unit magnitude constraint on the quaternion
and its simple form results in efficient computation.
The jacobian of translation is
0
a_Tx =1 (38)
Using Equation 32 through Equation ?,f(u a) can be
determined, sé andb can be compute
The Levenberg-Marquardt algorithm (a brief description
is given in Numerical Recipes in C [14]) minimizes

Szeliski and Kang [18], however, unlike in their approach, nonlinear functions by continuously varying between
we do not include the feature depths in the minimization. steepest descent far from the minimum and the inverse-
The result is an accurate and computationally efficient Hessian method close to the minimum. Variation between
approach to motion estimation. minimization methods is controlled by the value fin

The Levenberg-Marquardt algorithm finds the minimum Equation 29; small values ok correspond to inverse-
of C(a) by iteratively solving Hessian and large values correspond to steepest descent.

(A+Al)da = -b (29)
for da where 1. Compute Gi)
P _ - ) :
A = z f(uu a)g %f(u” a)I]' (30) 2. SetA = 0.001 (start with inverse-Hessian)
3. Compute A and solve(A+Al)da = —b foba.
4. EvaluateC(a+da) withig+dq =1 &T+oT| =1
b = z f(ul, a)Huy - f(u;, ) (31)
5. IfC(a+6a)=C(a)
andA is a scalar whose value is changed at each iteration A~ 10\
depending on the solution to Equation 29. After each goto 3.
iteration, the estimate_efis updated t@+da. Else
In our application— is a 2x7 matrix A~ 0.1\

Oa

q ~ (q+30)/[q+3d|
2 f(u,a) = [—f(u., a) ==f (u; a)] (32) T o (T+8T)/|T +5T|
where, using chain rule, a— a+oda
P 3 3 solve for new feature depths using Equation 27
Ef(ui, a) = Wf(ui, a)ﬁ—qX (33) goto 3.

Stop wher(C(a + da) —C(a))/C(a) <0.001
and

Figure 7: Nonlinear motion estimation algorithm.



Since we are solving for a rotation represented by a uniton an 174 Mhz R10000 SGFO
quaternion and also a unit length translation, these For both motion algorithms, the memory requirements
constraints need to be enforced during minimization. We for motion estimation are linear in the number of features
enforce these constraints by settifjg+dq| = 1 and tracked. Since the number of features is much smaller than
|T +3&T|| = 1 during the update of the parameter vector at the size of the images in pixels, the memory required for
each iteration. Consequently, these constraints are enforcechotion estimation will be much less than that required for
while not complicating the minimization by including the feature detection and tracking.
constraints explicitly in the minimization function.

The complete nonlinear minimization procedure is given
in Figure 7. The final stage of motion estimation computes the

In our implementation of nonlinear motion estimation, remaining motion parameter, magnitude of translation,
the scene structure, encoded in the relative depths, is nofrom laser altimetry data. Depending on descent angle and
included in the parameter vector during minimization. surface relief, one of two complimentary methods is used.
Inclusion of the feature depths would increase the length of
the parameter vector from 7 to 7+N. Since the minimization 2.4.1. Motivation
relies on an inversion of a square matrix of rank equal to the ] o ) )
length of the parameter vector to solve Equation 29, a Motion estimation using monocular imagery cannot
computationally expensive matrix inversion would result. Solve directly for the magnitude of translation, so an
Since feature depths can be computed directly from the€xternal means must be used to recover this parameter. For
motion between views, it is not necessary to include them in @ spacecraft in orbit about a small body, there exist multiple
the parameter vector. Instead, at each iteration, the featur®0SSible solutions. _
depths are updated using the current motion estimate. The One solution is to integrate the accelerometer
result is a computationally efficient and accurate motion Measurement in the spacecraft inertial reference unit to
estimation algorithm. It should be noted that in the case of determine position. The advantage of accelerometers is that
multi-frame motion estimation, the inclusion of structure in they present a completely onboard solution. Unfortunately,
the state is recommended because it enforces consistency igécause that come from integration of noisy acceleration
motion and structure estimates across multiple framesMeasurements, position measurements from accelerometers
containing the same set of features. Since we are computind\'e too inaccurate for precision landing. For example, if the
motion for just two frames, it is not necessary for our accelerometer measurement has an error ofug0 the
application. position error can grow to the kilometer level in an hour.

The output of nonlinear motion estimation is an estimate ~ 1he traditional approach is to use radiometric tracking
of the 5 DoF motion between views. In addition, the Measurements from earth. This approach has the advantage
covarianceZ of the motion parameters can be extracted ~that it is well understood and uses equipment already on

directly from the quantities computed during minimization Poard the spacecraft. However, radiometric tracking has
using many disadvantages. First, it requires dedicated Deep Space

Network tracking which is expensive and at times difficult
to schedule. Round trip light time for tracking from earth
induces a large latency in any position measurements
(approximately 24 minutes for comet Tempel 1). At deep
space distances, radiometric tracking is not accurate enough
relative to the size of maneuvers needed to explore a small

2.4 Scale Computation Using Altimeter

s(a) = AL, (39)
2.3.3. Processing Issues

If the number of featuredl is much greater than 8, then
the running time of closed form linear motion estimation is
: : Lo body.
O(N). However, for the robust linear motion estimation Aroth ) i ; i , K
algorithm, the number of features used in each trial is fixed nother optlgn Is to perform rac |ometr|g'trac Ing
at 8, so each trial takes constant time. Therefore, the runnin%)'stween the orbiter and the lander during precision landing

time of robust linear motion estimation@(m)proportional l_}g]' This .'Sha well uncégrgtoo% .ang accurate. technology.
to the number of trials m and does not depend on the HOWeVer, it has some distinct disadvantages: it requires a

number of features tracked. For the images shown inIine.qf sight between the orbiter and lander; the orbiter
Figure 5, the robust linear motion algorithm took 0.63 position must be known accurately; the lander must be

seconds for 78 trials(=0.99, ¢ = 0.3) on an 174 Mhz tracked from the orbiter; and additional equipment is
R10000 SGI & A ' needed on the lander and orbiter.

In a similar vein, surface beacons in known position
deposited by the spacecraft before landing can be used for
n position estimation. Positioning based on beacons can be
very accurate, however, if 3-D position is desired, then

Each iteration of the nonlinear motion algorithn@gN),
so givenl iterations, the nonlinear algorithm @(NI). For
the two images shown in Figure 5, the nonlinear motio
algorithm took 0.18 seconds for 50 features and 4 iterations



multiple beacons must be deployed and all beacons must b.4.2. Difference Scale Estimation
in line of sight with the lander at all times during descent.
The major disadvantage of this approach is that the beacons If images are taken as the spacecraft descends vertically
must deployed and anchored to the surface and the possiblyo the surface, or the surface has very little surface relief,
massive beacon deployment mechanism must be added t§omputation of translation magnitude is straightforward.
the spacecraft payload. Laser altimeter readingsA; and Aj; are acquired

As shown in Table 1, multiple missions have or are using Simultaneously with each image. As shown in Figure 8, the
laser altimeters for science return and navigation. Table 1difference in altimeter readings is equal to the translation of
also shows that as the design of laser altimeters progressedhe spacecraft along the z-axis between images.
their size, weight and power consumption are decreasingConsequently, the magnitude of translation is
while there accuracy and speed are increasing. As shown (A=A

below, laser altimeters can also be used as a navigation Il = t, (40)

sensor by aiding the determination of the position of the  £4; motion approaching horizonta}, approaches zero,
spacecraft. Laser altimeters give accurate range estimategqation 40 becomes ill conditioned and difference scale
and, when combined with a descent imager, present agggimation will not work. Furthermore, if the spacecraft is
complete on-board solution to 6-D body relative motion 4t gescending vertically and the surface topography is
estimation. A disadvantage of the laser altimeter approachyqgh on order of the scale of translation then the difference
is that they have limited range (50 km for the NEAR laser ot aitimeter readings will not accurately reflect the z
altimeter). However, near body operations is precisely when o mngnent of the translation. Once again, difference scale
accurate position estimation is needed the most, so this iSygiimation will not work. Fortunately a different, albeit

not a major issue. A laser altimeter is an additional sensor, jyqore complicated, procedure exists for computing scale in
however, science return combined with navigational use {hese cases

justify the addition. Based on the disadvantages of the other
available options, we determined that the use of a laser2 4.3. Structure-Based Scale Estimation
altimeter was the most promising solution for scale
estimation. From the feature-based motion estimate, the scaled
Another promising but immature technology that could depthsa; (Equation 27) to features in the scene can be
be used for position estimation is automatic recognition of computed. Assuming, without loss of generality, that the
small body landmarks for determination of absolute laser altimeter is aligned with the camera optical axis,
position. The advantages of this approach are that it requiredeatures in the center of the image will be at a depth
no additional equipment (a camera is sufficient) and it is a equivalent to the laser altimeter reading. Consequently, the
stand-alone, on-board solution. Currently, robust andratio of the laser altimeter reading to the scaled feature
completely autonomous solutions to this problem have notrange will be the magnitude of translation. This approach
been developed, however many approaches appearequires only one altimeter reading, so it is not susceptible
promising [9]. For this option to become a viable solution, to errors from changing surface relief. Furthermore, it does
the landmark recognition and position estimation not depend on nonzero translation along the z-axis. In fact,
algorithms will have to be efficient, accurate and robust.  structure-based scale estimation works better when the

Table 1: Laser Altimeters

mission name use date sample rat max range accuragy size mas]s power
Clementine Clementine 1994 1Hz 640 km 40m 13x15x4 cm? 1.2 kg® 6.8 W2
LIDAR[13] + + +
17x18x36 cm 1.1 Kg 95W
Mars Global Mars Orbiter 1999 10 Hz 786 km 20m 50x50x75cm 25 kg 34W
Surveyor

Laser
Altimeter [17]

Near Earth NEAR Laser 2000 8 Hz 50 km 2.0m 37x23x22cm 5kg 15W
Asteroid Altimeter [5]
Rendezvous
DS-4/ Laser Radar 2006 10,000 Hz 2km 0.2m 20x10x10cm 2 kg 10w
Champollion Instrument

a. The Clementine LIDAR has two parts: the laser transmitter (first spec.) and the HIRES camera for receiver optics (second spec.).
b. The LRI figures are design specifications based on a JPL internal design document for the scanning laser rangefinder being built for DS-4/Champollion.
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spacecraft is descending at an angle with respect to thq|(uj,vj)|| which is proportional to the distance from the
surface because in this case, scene structure can baénage center; features closer to the image center will have
estimated more accurately than for pure descent. greater weight. The image-based scene depth at the image

The procedure for structure-based scale estimation is tocenter has the same depth as the altimeter reading taken
first compute the feature based motion between imageswvhen the first image was acquired, so the magnitude of
along with the depth of the features in the image (a by- translation is
product of nonlinear motion estimation). Assuming A

ITh = (42)

alignment of laser altimeter with the optical axis, the .
features near the center of the image will be geometrically A number of observations can be made about structure

close to the surface patch that supplies the reading for thebased scale estimation. First, As the translation between

laser altimeter (see Figure 8). Since it is unlikely that a . : .
. . images approaches vertical, the structure estimates degrade,
feature will correspond exactly to the image center, a few ; . L . :
specially near the optical axis (i.e., on the optical axis, the

(3-5) features closest to the image center are selected anﬁ. . .
isplacement between features will be zero for vertical

weighted interpolation is used to determine the scene depthdescent - structure from triangulation cannot be computed)
at the image center, '

Fortunately, vertical descent is precisely the motion where
a, = 5 é‘i : %5 .l E (41) difference scale estimation worl_<s be_st. The c_omplem_entary
o (O] Eae Y (O] nature of these two scale estimation algorithms will be
In the above equation, the feature depths are weighted byexplored further in Section 4. Second, for the altimeter
reading to be related to scene structure, a feature must be
located near the optical axis in the first frame.
Consequently, structure-based scale estimation will work
better when more features are tracked in order to guarantee
that a feature will be near the optical axis. Alternatively,
another approach is to always make the image center a
feature so that a depth value will always exist near the
altimeter reading. Since this approach requires that the
image center have sufficient structure for feature tracking,
which cannot be guaranteed, it was not attempted.
The magnitude of translation from laser altimetry when
combined with feature-based motion completes the 6 DoF
motion estimation of the spacecraft.

2.5 Multi-frame Issues

Difference Scale Estimation The algorithm presented above solves for 6 DoF motion
using feature tracking between two image frames. Given an
image stream (multiple images taken in a sequence), it is
possible to track features across multiple images; this leads
to faster and more robust feature tracking and ultimately
more accurate motion estimation. Consequently, when
estimating motion for an image stream, we track features
across multiple images which requires some minor
modifications to our algorithm.

The primary advantage of multi-frame feature tracking is
that features do not have to be detected for each frame. By
definition, the features that were detected in the first frame
will remain features, image locations that are easy to track,
for many images after they were detected. Consequently, a
feature detected in the first frame is tracked until the
appearance of the feature changes too much for continued

features tracking (occlusion, passes out of field of view, large
viewing or illumination change). Eventually, too many
Structure Scale Estimation features will be eliminated for precise motion estimation, so

. o . . new features will have to be detected. In our
Figure 8: Methods for estimating translation magnitude.
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implementation, features are added at key frames in thetracking, then the feature track position will start out very
sequence. The number of features added is such that thelose to its true position. This will result in less iterations
total of the features still being tracked at the key frame and and time spent during feature tracking.
those added equals the number of features tracked in the Furthermore, given the smooth trajectory assumption, it
first frame. For the results presented in this paper, keyis possible to eliminate the robust linear motion estimation
frames occur every 4 images in the stream. Since featureslgorithm altogether. Local linearity in feature tracks can be
do not have to be detected every image, but every key framepused to eliminate outliers feature tracking errors. Instead of
the average processing time per frame is reduced. Note thathe linear algorithm estimate, the motion estimated from the
with multi-frame tracking, the features for the current frame previous frame can be used as the initial estimate for the
could have been added at any previous key frame, so oumnonlinear motion estimation algorithm. With a way to
feature tracking data structures are designed to handlesliminate outliers and provide an initial estimate to the
arbitrary frame starting points for features. nonlinear algorithm the linear algorithm is no longer
Feature tracking across multiple frames is the same asneeded. However, to be safe, we still include the linear
feature tracking across two frames with a few motion estimation algorithm in our multi-frame
modifications. First, the feature window (imabes taken implementation.
from the image where the feature was first detected and the Another advantage of tracking features across multiple
tracking window is taken from the currentimage (imaye  frames is that the disparity between the feature detection
This will prevent feature drift by guaranteeing that the and current image positions increases. As disparity
feature window being tracked is the one originally detected. increases, the sensitivity of motion estimation to feature
Second, the feature tracking displaceneigt initialized at tracking errors decreases, so the errors in motion estimation
the feature tracking displacement computed for the previouswill decrease. We show in Figure 12 that when modified to
frame instead of being initialized @ This will reduce the =~ compute motion between the initial and current frame, our
number of iterations in for tracking each feature making multi-frame algorithm is able to compute more accurate
feature tracking more efficient. motion estimates. To properly handle multi-frame motion
If it can be assumed that the motion of the spacecraft isestimation, we need an algorithm that handles features
smooth (C1), then the trajectory of the features through theadded at different key frames. We are currently
image stream will be locally linear (i.e., the feature investigating this issue.
positions will lie along a line). This assumption leads to two
possible improvements to feature tracking. To define locally
linear, suppose that the image position of a feature in the  The algorithm we have presented can be used to estimate

2.6 Discussion

three most recent frames arep_, = (u_,Vv;_,) , motion with respect to any proximal surface. Consequently,
Pi_y = (U_pVvi_y) and p; = (u,v) . A feature track is it can be used for precision landing on comet nuclei.
locally linear if asteroids and small moons. It can also be used for proximity
o= P =P operations during rendezvous and docking between two

aCOS(pI_Z p|_1)[(p|_1 p|)</\ (43) p g g

spacecraft. Another application is estimating the attitudinal
motion of a orbiter or satellite during precision pointing to
surface targets. Rotational motion is completely determined
from image-based motion estimation, so a laser altimeter is
unnecessary for this application.

One of the underlying assumptions of the algorithm is
that the surface being imaged has texture. Texture is needed
for feature detection and tracking. Comet surfaces are
expected to be rough at all scales, so shading variation due
to changing surface normal will provide adequate texture

IPi—o=pi-aflPica=mpi

where A is an angular threshold that we set®. If a
feature track is not locally linear than it is likely that the
tracking is erroneous, so the feature is eliminated. This
feature filtering reduces the number of feature track outliers
beforemotion estimation making motion estimation more
robust. It also reduces the percentage of outlier feature
trackse, so the number of feature track subsets that have to
be investigated during robust linear motion estimation
(Equation 17) is reduced leading to a reduction in the time . . .
spent in the linear motion algorithm. for feature tracking. Asteroid surfaces will have some

Given the smooth trajectory assumption, the position of regions of little texture, but because of cratering, there
the features in the next frame can be predicted should be sufficient texture in parts of the image for feature

Extrapolating the notation from above, the predicted trackln% (see fFlgure 2)]; In othgr _apphcznorr]]s, I;hf)
position of the featurp,,; in the next frame can be texture nedssbof t eh_sur Iace_shto be lrlnaged fs ou’d be
expected to be close to the linear extrapolation of the featureduaranteed before this algorithm s selected for motion

positions in the previous two frames. est|mat|on._ L .
Our motion estimation works best when the spacecraft is
Pisr = P+ (Pi—Pi_1) (44)

R o close to the surface being imaged. In general image based
If the extrapolated position is used to initialize feature motion estimation algorithms are more accurate when

12



differences in body shape or terrain height are observableobtained though camera calibration [20]. Each camera was
between image frames. This generally occurs when thecalibrated using a calibration target and as a by product of
spacecraft is close to the surface. Another advantage othe calibration procedure, the direction of translation was
being close to the surface is that the surface fills the field of computed. For the descent sequence, the true translation
view, so features can be tracked in the entire image. For adirection is (0,0,-1), and for the approach sequence, the true
given camera field of view, the wider the spread in feature translation direction is (0.0096, -0.0033, -0.9999). Since the
tracks, the more accurate the motion estimation becomes. cameras were rigidly fixed, there was no rotation in the
In feature-based motion estimation, there are couplingsmotion.
between translational and rotational motions. For example, An altimeter reading was simulated for each image by
arotation about th¥ axis will cause the features to move in  using the translation stage reading as the altimeter reading.
the image in much the same way as a translational motionUsing this data type, the scale of translation is know to the
along theY axis. This coupling cannot be avoid, however, it accuracy of the translation stage, so no scale estimation
can be detected. The covariance of the image-based motiomethod is needed. In the future, an imaging setup with a
estimate (Equation 39) will encode this coupling, so that laser altimeter will be used to test the scale estimation
when the motion estimate and covariance are incorporatednethods.
into the spacecraft guidance, navigation and control filter, The results are presented in the Figure 9 through
these dependencies will not bias the estimate of spacecraffigure 13. For each sequence, motion is estimated using 50
motion from all onboard sensors. or 500 features. At the top of each figure is shown the
| | feature tracks for the entire sequence. Different color tracks
3 Results on Real Imagery correspond to the different key frames when the features
To test our motion estimation algorithm, we generated Were added to the sequence; a key frame occurred every 4
two sequences of real imagery. First a comet nucleus analogrames. Next are shown the computed translaftsrty,tz)
was created by a comet scientist at JPL. This analog isand rotation anglegrx,ry,rz) of the motion computed for
rough at all scales and matte black, the expectedeach frame using the two stage motion estimation
characteristics of comet nuclei. The ana|og has an algorithm. Following these is a p|0t showing the translation
approximate diameter of 25 cm. We placed the analog on a€ffor magnitude (vector distance between the true and
rigid stand and took two sequences of images as the camergstimated translations) for each frame in the sequence. On
moved toward the comet analog. The first sequence whichthis plot, the dashed line corresponds to the expected
we call descentwas with a 640x480 CCD imager, a 15 performance of the algorithm established using Monte
degree field of view lens. The second sequence calledCarlo simulation (assuming perfect feature tracking) for the
approachwas taken with a 1024x1024 CCD imager and a imaging parameters and motion (See Section 4). Finally, the
25 degree field of view lens. Both sequences were acquiredotation error magnitude (vector difference between
with the camera starting 80 cm from the comet analog; the €stimated and true rotation angles) is shown for each frame.

camera moved 1.00 cm toward the analog between eact\gain, the dashed line corresponds to the expected
image. performance of the algorithm established using Monte

Ground truth for the image sequence motions were Carlo simulation. Table 2 summarizes the results from the

Table 2: Motion estimation results.

soarce | T | camaon | T | | M| et | meme | o |
stages (seconds)
descent 50 linear 0.044927 0.06376 6.24 25 4.01
descent 50 nonlinear 0.044966 0.0662209 13.1 25 1.90 0.0579763 0.0411912
descent 500 linear 0.033483 0.056666 31.61 25 0.79
descent 500 nonlinear 0.033615 0.056834 82.33 25 0.30 0.0169 0.0120
approach 50 linear 0.028092 0.024439 2.4 7 291
approach 50 nonlinear 0.023936 0.021443 3.94 7 1.77 0.0659696 0.0505746
approach 500 linear 0.01861 0.017992 13.42 7 0.52
approach 500 nonlinear 0.018938 0.15937 24.05 7 0.29 0.0221996 0.169442
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Figure 13: Motion estimated from the first frame for the
Approach Sequence. Shows as feature disparity in-

creases, the motion estimates improve.
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four sequences and compares the motion estimation results
for the linear algorithm to the motion estimation results
obtained using the linear and nonlinear algorithm.

The results in Table 2, show that in general the addition
of the nonlinear motion estimation algorithm does not
improve the results of motion estimation all that much. This
is because for vertical descent, the motion computed using
the linear algorithm is very constrained, so the results are
very close to those obtained using the nonlinear algorithm.
Including the nonlinear algorithm in general doubles the
running time of the algorithm, so for the vertical descent, it
is probably a good idea to remove this stage from the
algorithm if running time is important.

Another general trend shown in Table 2 is that changing
from 50 features to 500 features improves the motion
estimation results. However, the relative improvement is
less than 50% in all cases while the processing time
increases by on order 600%. Obviously, diminishing returns
dictates that the number of features should be kept as small
as possible; in these example sequences, 50 features is
sufficient.

For the 50 feature descent sequence and the linear
motion estimation algorithm, the average translation error is
0.045 cm or 4.5% of the distance traveled. The average
rotation error is 0.063 degrees from no rotation. These error
values are similar to the expected motion errors (0.057 cm
and 0.04 degrees) from Monte Carlo simulation given the
parameters of the image sequence. The frame rate for this
sequence is 4.01 Hz on a 174 Mhz R10000 s&l o

For the 50 feature approach sequence and the linear
motion estimation algorithm, the average translation error is
0.028 cm or 2.8% of the distance traveled. The average
rotation error is 0.024 degrees for no rotation. These error
values are similar to the expected motion errors (0.066 cm
and 0.05 degrees) from Monte Carlo simulation given the
parameters of the image sequence.The frame rate for this
sequence is 2.91 Hz on a 174 Mhz R10000 s&l o

The approach sequence results are more accurate
because the resolution of the imager is greater which makes
pixel track errors smaller. However, the approach sequence
takes slightly longer to process because the larger image
requires more time to detect features.

Motion estimation accuracy increases as feature
disparity increases. To demonstrate this result, Figure 13
shows the expected motion estimation accuracy for the
approach sequence given that features are tracked across
multiple frames and the motion is estimated between the
current frame and first frame. This experiment shows that
for the approach sequence, as you increase the pixel
disparity, the motion estimation becomes much better. In
the last frame the median feature disparity is 23 pixels and
the translational motion estimation accuracy is 0.004 cm.
For a motion of 6 cm this is a 0.066% relative error. The
rotational motion error is 0.003 degrees for no rotation.



In general, these results show that highly accuratethe sensor origin and the surface intersection. Gaussian
motion estimation is possible using this algorithm. noise is then added to the range value to simulate
Furthermore, the processing times indicate that on-boardmeasurement noise in the altimeter. Using this altimeter
image-based motion estimation is feasible. Given an orderreading, the complete 6 DoF motion is estimated.
of magnitude difference in processing speed between our The results of many Monte Carlo trials are used to
test computer (200 MIPS R10000) and a typical flight determine empirically the motion estimation accuracy. For
computer (20 MIPS RAD6000), each frame will take only each trial, a new synthetic terrain is created so that
a few seconds to process using the onboard CPU. This isdependencies on surface shape do not appear in the
more than enough speed for small body precision guidanceanalysis. Since the ground truth motion is known, after each
and landing. trial, the error in translational motion and the error in
f . rotational motion can be computed. Statistics on these
4 Performance Testing errors (average, median, standard deviation) for many trials

Using Monte Carlo testing, the effect of sensor constitute our estimates of motion accuracy.
parameters (e_g_1 field of view, reso|ution), Spacecraft This experimentassumesthatfeatures have been tracked
trajectory (e.g., motion, altitude) and scene characteristicsrobustly (no outliers) and accurately between frames.
(e.g., surface scale) on the accuracy of body relative motionF-eature tracking is excluded for two reasons: it depends on
estimation can be determined empirically. We used thesescene appearance which is too varied and difficult to
tests to search for the “best” sensor parameters for precis@arameterize; and previous studies have already modeled
motion estimation and to predict the performance of the the accuracy of feature tracking, so its performance and

algorithm given a predetermined set of sensor parameters.accuracy are well understood [24].
For these tests some of the motion estimation parameters

4.1 Monte Carlo Simulation were fixed. Imager resolution was fixed at 1024 because this

represents the terrain of the small body within the field of View was set to at 30 degrees because Monte Carlo

given in Figure 14. Next, a feature position in the firstimage 30 degrees is the best all around field of view that balances
is generated by randomly selecting a pixel in the image imager resolution, feature disparity and motion estimation
(feature position in first image). The 3-D position of the accuracy [7]. The spacecraft altitude was set to 1000 m
feature is found by intersecting its line of sight ray with the because this is a nominal altitude for the precision landing

synthetic surface. Since the position of the camera for thePhase of the DS-4/Champollion mission. The altimeter
second view is a known input, the 3-D point can be '&nge accuracy was setto 0.2 m following the specification
projected into the second view to determine its pixel 9iven for the DS-4 Laser Radar Instrument. Feature
position in the second image. Gaussian noise is then addedf@cking error was set at 0.17 pixels based on the analysis in
to this feature pixel position to simulate feature tracking [24]- The feature tracking disparity was set at 20 pixels
errors. This is repeated for however many features arebecause our experience has shown that it is reasonable to
requested. From these feature tracks, 5 DoF motion istrack features this far using multi-frame tracking. Scene
estimated. Altimeter readings are computed by intersectingSurface scale is the absolute height variation between the
the line of sight for the altimeter (the camera optical axis) closest and farthest terrain points in the field of view of the

with the synthetic terrain, and computing distance betweenimager. The scene surface scale for generation of the terrain
map was set to at 20% of altitude above the surface or 200

m. Finally, the number of tracks was set at 500 to enable
highly accurate motion estimation without using an
unreasonable number of features given that motion
estimation time is always an issue.

The remaining parameters to investigate are the motion
of the spacecraft and the scale estimation mode used in the
algorithm.

4.2 Effect of Motion on Motion Accuracy

This investigation was performed to determine the effect
of different spacecraft motions on motion estimation

Figure 14: Example of a synthetic terrain used in Monte accuracies. To simplify this investigation, the space of
Carlo simulations. possible motions was broken into two groups: descent (pure
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translational motion) and pointing (pure rotational motion). Figure 15 corresponds to a fixed set of imaging parameters,
Descent can be parameterized by descent an¢Bee so if the imaging parameters change, a new plot will have to

Figure 8), the angle between horizontal and the translationbe generated.

direction of the spacecraft. Given the above parameters, .

simulations showed that a translational motion accuracy of5 Conclusion

0.22 m is expected independent of scale estimation mode e have developed and tested a software algorithm that
and descent angle. At a fixed pixel disparity, the distance enables onboard autonomous motion estimation near small
traveled between frames varies depending on the magnitudgodies using descent camera imagery and laser altimetry.
of translation. For a horizontal motiog=90°), a 20 pixel  Through simulation and testing, we have shown that image-
disparity and 30°field of view corresponds to a motion of 12 based motion estimation can decrease uncertainw in
m. The motion error is then 0.22 m over 12 m or 1.8%. For Spacecraﬂ motion to a level that makes |anding on small,
a descent angle 945" and a 30° field of view, a 20 pixel jrregularly shaped, bodies feasible. Possible future work
disparity corresponds to a motion of 17 m resulting in a will include qualification of the algorithm as a flight
motion error of 0.22 m over 17 m or 1.3%. FlnaIIy for experiment for the Deep Space 4/Champ0|||0n comet
vertical descentyc0°)and a field of view of 30°, a 20 pixel  |ander mission currently under study at the Jet Propulsion
disparity corresponds to a 65 m motion. Thus the error is | aboratory. Current research is investigating the use of this
0.22 m over 65 m or 0.34%. algorithm to aid 3-D modeling of small bodies for terrain

By integrating this motion accuracy estimate from hazard assessment and comet absolute position estimation.
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accuracy can be obtained. Simulations showed that the most
accurate landing position occurs for the vertical descent[l] A. Azarbayejani and A. Pentland. Recursive estimation of
with a 10 degree field of view. In this case the landing motion structure and focal lengthEEE Trans. Pattern

" . . Analysis and Machine Intelligenceol. 17, no. 6, pp. 562-
position accuracy is 3.6 meters. From a height of 1000 575, June 1995,
meters, this is an accuracy of 0.36% of the starting altitude. [2] A. Benedetti and P. Perona. “Real-time 2-D feature detection

To determine pointing accuracy we only investigated on a reconfigurable computePtoc. IEEE Conf. Computer
rotations with axes perpendicular to the camera Z-axis since ~ Vision and Pattern Recognition (CVPR'9§)p. 586-593,
rotations about the camera Z axis are unnecessary for 1998.

ointing to surface targets. For a 30° field of view. a pixel [3] T.J.Broida, S. Chandrashekhar and R. Chellappa. Recursive
P g gets. »ap 3-D motion estimation from a monocular image sequence.

disparity of 20 pixels corresponds to a rotation of 0.6° away IEEE Trans. Aerospace and Electronic Systevas 26, no.
from the optical axis. Simulations showed that given these 4, pp. 639-656, July 1990.

parameters, a rotational motion estimation accuracy of[4] D.Brownlee, P. Tsou, K. Atkins, C. Yen, J. Vellinga, S. Price

0.006 degrees or 1% of the rotational motion is expected. and B. Clark. Startdust: Finessing Expensive Cometary
. . Sample Returns.2nd Int'l Conf. Low-Cost Planetary
4.3 Scale Estimation Mode Missions Laurel MD, IAA-L-0209, April 1996.
Descent angle and scene surface scale dictates whictp! T D. Cole, A. F. Cheng, M. Zuber and D. Smith. The laser
scale estimation mode to use during descent. Simulations Scale Estimation Mode Partitioning

were performed to determine at which descent angle the

transition between scale estimation modes should occur. ~ %° ' ' '
This angle is dependent on scene scale and is defined as the Difference Scale Estimation
angle where translation magnitude errors of the two modes __ 8s
Cross over. 8
The results of the simulation are shown in Figure 15. 2
Inspection of the graph reveals that structure scale % 86
estimation should be used except when the surface is very @
flat (scale < 25 m at 1000 m altitude or 0.25% of altitude) or ; 84
descent is very close to verticgg88°). Using this plot, it is §
possible to determine which scale estimation mode to use 3 82
before scale estimation is performed. Descent angle is fully
determined from 5 DoF image-based motion estimation.
The scene scale_can be det_ermined bef_ore descen_t then 80, 100 200 300 400
though 3-D modeling or analysis of laser altimeter readings. scene scale (meters)

Given this descent angle/scene scale data point, the scal€igure 15: Scale Estimation Mode Partitioning from
estimation mode can be can be looked up using Figure 15Monte Carlo Simulation.

18



(6]
(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

rangefinder on the Near Earth Asteroid Rendezvous
spacecraft2nd Int'l Conf. Low-Cost Planetary Missions
Laurel MD, IAA-L-0910, April 1996.

R. Hartley. “In Defence of the 8-point algorithm3th Int’l
Conf. on Computer Vision (ICCV'95)p. 1064-1070, 1995.

A. Johnson. Monte Carlo experiments combining descent
camera imagery and laser altimetry Web Reference: http://
telerobotics.jpl.nasa.gov/people/johnson/ABLE/project/
motion/monteCarlo.html, 1998.

J. Kawaguchi, T. Uesugi, A Fujiwara and H. Matsuo. The
Muses-C, world’s first sample and return mission from a near
earth asteroid Nereu@nd Int'l Conf. Low-Cost Planetary
Missions Laurel MD, 1AA-L-0202, April 1996.

B. Leroy and G. Medioni. Crater detection for autonomous
landing on asteroids. Submitted EBEE Computer Vision
and Pattern Recognitiqri999.

H. Longuet-Higgins “A computer algorithm for
reconstructing a scene from two projectionature vol.
293, pp. 133-135, September 1981.

L. Matthies.Dynamic Stereo VisiorRh.D. Thesis, School of
Computer Science, Carnegie MEllon University, 1989.

J.K. Miller, B.G. Williams, W.E. Bollman, R.P. Davis, C.E.
Helfrich, D.J.Scheeres, S.P. Synott, T.C. Wang, and D.K.
Yeomans. “Navigation analysis for Eros rendezvous and
orbital phases.Journal Astronautical Sciencegol. 43, no.

4, pp. 453-476, 1995.

S. Nozette et al. The Clementine mission to the Moon:
Scientific OverviewSciencevol. 266, pp. 1835-1939, 1994.
W. Press, S Teukolsky, W. Vetterling and B. Flannery.
Numerical Recipes in C, 2nd EditioBambridge University
Press, Cambridge, UK, 1992.

J.E. Reidel, S. Bhaskaran, S.P. Synott, W.E. Bollman and
G.W. Null. “An autonomous optical navigation and control
system for interplanetary exploration missiongrid 1AA
Int'l Conf. on Low-Cost Planetary Missionsaurel MD,
IAA-L-506, 1996.

J. Shiand C. Tomasi. “Good Features to Traékdc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR’94)
pp. 593-600, 1994.

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W.
Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C.
Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury.
Topography of the northern hemisphere of Mars from the
Mars Orbiter Laser AltimeteiSciencevol. 279, pp. 1686-
1692, March 13th, 1998.

R. Szeliski and S.B. Kang. Recovering 3-D shape and motion
from image streams using non-linear least squalestnal
Visual Communication and Image Representatiah 5, no.

1, pp 10-28, March 1994.

S. W. Thurman, C. D. Edwards, R. D. Kahn, A.
Vijayaraghavan, R. C. Hastrup and R. J. Cesarone.
Spacecraft navigation at Mars using earth-based and in situ
radio tracking techniquesWorld Space Congress 1992
International Astronautical Federation, Washington DC,
1992.

R. Tsai. A versatile camera calibration technique for high-
accuracy 3D machine vision metrology using off-the-shelf
TV cameras and lensedEEE Journal Robotics and
Automation Vol. RA-3, No. 4, pp. 323-344, August 1987.

19

[21] .J. Weng, T. Huang and N. Ahuja. “Motion and structure
from two perspective views: algorithms, error analysis and
error estimation.” I[EEE Pattern Analysis and Machine
Intelligence vol 11, no. 5, pp. 451-476, 1989.

[22] J. Weng, N. Ahuja and T. Huang. “Optimal Motion and
Structure Estimation.TEEE Pattern Analysis and Machine
Intelligence vol 15, no. 9, pp. 864-884, 1993.

[23] M.D. Wheeler and K. Ikeuchi. Iterative estimation of rotation
and translation using the quaternion. Carnegie Mellon
University School of Computer Science Technical Report
CMU-CS-95-215, December 1995.

[24] Y. Xiong and L. Matthies. Error analysis of a Real-Time
Stereo SystemProc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR'97pp. 1087-1093, 1997.

[25] Z. Zhang. “Determining the epipolar geometry and its
uncertainty: a reviewInt'l Jour. Computer Vision1997.

Acknowledgments

We would like to thank Jean-Yves Bouguet for
discussions on motion estimation. We would also like to
thank Jackie Green for providing the comet analog.



	1 Introduction
	2 Motion Estimation
	3 Results on Real Imagery
	4 Performance Testing
	5 Conclusion

