
Fast and Reliable Obstacle Detection and Segmentation for
Cross-country Navigation

A. Talukder, R. Manduchi*, A. Rankin, L. Matthies

Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA 91109. Tel. (818)354-1000 – Fax (818)393-3302

[ashit.talukder,art.rankin,larry.matthies]@.jpl.nasa.gov

*University of California at Santa Cruz
Santa Cruz, CA 95064. Tel. (831)459-1479 – Fax (818)459-4829

manduchi@soe.ucsc.edu

Abstract1

Obstacle detection (OD) is one of the main components
of the control system of autonomous vehicles. In the case
of indoor/urban navigation, obstacles are typically de-
fined as surface points that are higher than the ground
plane. This characterisation, however, cannot be used in
cross-country and unstructured environments, where the
notion of "ground plane" is often not meaningful. A pre-
vious OD technique for cross-country navigation
(adopted by the DEMO III experimental unmanned vehi-
cle) computes obstacle by analysing the columns of a
range image independently, looking for steps or slopes
along the range profile. This procedure, however, is
prone to missing obstacles with surface normal pointing
away from the line of sight. We introduce a fast, fully 3-D
OD technique that overcomes such a problem, reducing
the risk of false-negatives while keeping the same rate of
false-positives. A simple addition to our algorithm allows
one to segment obstacle points into clusters, where each
cluster identifies an isolated obstacle in 3-D space. Ob-
stacle segmentation corresponds to finding the connected
components of a suitable graph, an operation that can be
performed at a minimal additional cost during the com-
putation of obstacle points. Rule-based classification
using 3-D geometrical measures derived for each seg-
mented obstacle is then used to reject false-obstacles (for
example, objects that are small in volume, or of low
height). Results for a number of scenes of natural terrain
are presented, and compared with a pre-existing obstacle
detection algorithm.

Keywords:Autonomous navigation, obstacle detec-
tion, terrain perception, 3-D vision, classification, geo-
metrical reasoning

1. Introduction
Path planning for autonomous vehicles requires that the
map of all visible obstacles be produced in real time us-
ing the available sensing information. The obstacle-free
candidate paths leading toward the desired position are

1 Presented at IEEE IV 2002, France, June 18-21, 2002

then compared in terms of their hindrance (measured, for
example, by the amount of steering involved [La-
caze98].)

For navigation indoor or in structured environment
(roads), obstacle are simply defined as surface elements
that are higher then the ground plane. Thus, assuming
that elevation information is available (by means of ste-
reo cameras or ladars), the main task of obstacle detec-
tion (OD) algorithms for indoor/urban environments is to
estimate the ground plane in front of the vehicle. Many
papers exist in the literature dealing with such a problem
(see for example [Zhang94],[Williamson98],[Broggi00].)

This flat-world assumption is clearly not valid when
driving in off-road, cross-country environments. In such
cases, the geometry of the terrain in front of the vehicle
can hardly be modelled as a planar surface. Figure 1
shows examples of natural scenes where no distinct pla-
nar surface can be fit as a ground surface due to inade-
quate number of visible ground points.

In principle, one could determine the traversability of a
given path by simulating the placement of a 3-D vehicle
model over the computed elevation map, and verifying
that all wheels are touching the ground while leaving the
bottom of the vehicle clear. This procedure, however,
besides being computationally heavy, requires the avail-
ability of a high-resolution elevation map to work with.
Maps are estimated starting from range images (from
stereo or ladars). Backprojecting image pixels onto the 3-
D world generates a non-uniform point set. Therefore,
either the elevation map is represented by a multiresolu-
tion structure (which makes the OD task cumbersome),
or it is interpolated to an intermediate-density uniform
grid, which may imply a loss of resolution in some re-
gions of the map.

Figure 1: Examples of natural terrain

Conversely, working directly on the range image do-
main (pixel-based approach) presents two advantages:
first, it is much faster than dealing with elevation maps;
second, it uses range data with the highest resolution
available (since the data does not need to be interpolated
into fixed-size 3-D cells.) Indeed, the elevation map ap-
proach allows one to easily integrate range information as
the vehicle moves along and collects more sensing in-
formation. This functionality is certainly important for
robust path planning, especially when the scene has many
visual occlusions, meaning that a single view may not
convey enough information. Yet, we argue that for a ve-
hicle moving forward, it is the most recently acquired
range image that typically contains the higher resolution
range information. Hence, computing obstacles based on
the most recent range image makes sense on the grounds
of computational efficiency and of detection accuracy.

Matthies et al. developed a fast pixel-based algorithm
to detect obstacles for cross-country terrain [Mat-
thies94],[Matthies96],Matthies98]. Their technique
(adopted by the DEMO III eXperimental Unmanned Ve-
hicle (XUV) [Bellutta00]), measures slope and height of
surface patches (where “slope” is measured by the angle
formed by the surface normal and the vertical axis.) Fig-
ure 2 shows an example of a 1-D range profile, where
slant (θ) and height (H) are shown for two different sur-
face patches. Obstacles correspond to ramps with a slope
above a certain threshold and spanning a minimum
height. The rationale behind this approach is simple: if a
surface patch has limited slope, we may assume that it
belongs to the ground surface (for example, as part of a
path leading to a plateau,) and therefore it is traversable.
If a patch is steep but of small size, it corresponds to an
obstacle short enough to be negotiable by the vehicle.
Thus, the lower patch in Figure 2 would probably be
considered traversable, while the higher patch would
probably be considered an obstacle.

In fact, the OD technique of [Matthies96] looks exclu-
sively at 1-D range profiles such as in Figure 2, because
it analyses each column in the range image separately
from the others. This choice, which makes the algorithm
very fast, has drawbacks in terms of detection accuracy.
It is easy to see that any 1-D range profile corresponding
to one column of the range image is equal to the trace left
by the visible surface on a slicing plane Π defined by the
column points in the image plane and the focal point of

the camera. The estimated slope of this 1-D range profile

is not equal, in general, to the true slope of the visible
surface, and can actually be much smaller than that.
Thus, an obstacle may be missed by such a technique, if
the obstacle’s surface normal points away from the slic-
ing plane Π.

In this paper, we present an improved version of the
column-wise OD algorithm [Matthies96], which com-
putes 3-D slopes and yet retains most of the simplicity
and computational efficiency of the original approach.
More precisely, this work has three main contributions.
First, we provide a simple but rigorous definition of ob-
stacle points that make sense for cross-country environ-
ments, formalizing and extending the intuitive notion in
[Matthies96], and its improvements [Bellutta00]. Second,
we derive an efficient algorithm to compute the obstacle
points in a range image. Third, we present a technique to
correctly segment such obstacle points, so that isolated
obstacles are identified and labeled. We show that obsta-
cle segmentation (OS) corresponds to finding connected
components in a suitable graph built by the OD proce-
dure. Our OS procedure makes full use of 3-D informa-
tion, and is implemented efficiently in terms of computa-
tions and memory.

The paper is organized as follows: The OD algorithm
is detailed in Section 2, followed by a discussion of our
obstacle segmentation (OS) algorithm in Section 3. In
Section 4, we discuss some of the parameters in the OD
and OS algorithms, and in Section 5, we detail our 3-D
geometrical-based obstacle reasoning and classification
method, followed by results of our algorithms and com-
parison with a pre-existing OD method in Section 6.

2. Obstacle definition and algorithms for OD
In this section we give an axiomatic definition of “ob-

stacle” which is amenable for cross-country navigation,
and derive a simple and efficient algorithm for obstacle
detection (OD). We will show in Section 3 that a simple
extension of this algorithm allows us to not only detect
obstacle points in an image, but also to identify regions
of points belonging to the same obstacle.

In order to introduce our algorithm, we first provide an
axiomatic definition of the “obstacles” we want to detect.
We will define obstacles in terms of two distinct points in
space:

Definition 1.: Two surface points p1=(p1x,p1y,p1z) and
p2=(p2x,p2y,p2z) belong to the same obstacle(and will be
called “compatible” with each other) if they satisfy the
following two conditions:
1. HT<|p2y-p1y|<Hmax (i.e., their difference in height

(along y axis) is larger than HT but smaller than
Hmax);

2. |p2y-p1y|/||p2-p1||>cos(θT) (i.e., the line joining them
forms an angle with the horizontal plane (spanned
by the x and z axes) greater than θT);

y

z

Figure 2: 1-D range profile and obstacle definition

where HT, Hmax and θT are suitably chosen constants.

In our definition, HT is the minimum height of an object
to be considered an obstacle, where the vertical axis is
the y-axis, as shown in Figures 2 and 4. Hmax is a pa-
rameter controlling the size of the analysis window in the
OD algorithms, and will be discussed in Section 3; θT is
the smallest value of the slope of the steepest point of an
obstacle relative to the horizontal plane (spanned by the x
and z axes, Figures 2 and 4).

Thus, a point p is classified as “obstacle” if there exists
at least another visible surface which is compatible with
p. Definition 1, however, specifies more than just that: it
also formalizes the notion of points belonging to the
same obstacle. This is rather useful if, beyond determin-
ing obstacle points, one wishes to segment the different
obstacles visible in an image, as discussed in Section 3.

Figure 3 shows an illustration of the detection of ob-
stacle points (blue) in 3-D space based on slope and
height measures relative to ground points (brown).

A naïve strategy for detecting all the obstacle points in
an image would thus examine all point pairs, resulting in
N2 tests. Note that testing if two points are compatible
requires 5 sums, 4 multiplications and 3 comparisons, all
on floating-point numbers. A more efficient algorithm
can be designed starting from the following observation.
According to Definition 1, p is an obstacle point if and
only if there exists at least one visible surface points lo-
cated inside the double truncated cone of Figure 3.
Searching for such points in 3-D space, however, is an
expensive operation. Instead, we observe that the double
truncated cone centered in p projects into a double trun-
cated triangle in the image plane centered in pixel p (the
projection of p on the image plane2). Each such triangle
has height equal to Hmaxf/pz, where f is the camera’s focal
length. Note, however, that an image point in such trian-
gles is not necessarily generated by a 3-D point within
the cone. Thus, a strategy for detecting all obstacle points

2 As there is a one-to-one correspondence between 3-D points p in

the range image and their projections p in the image plane, we will say
that two 2-D points p1 and p2 are compatible, meaning that their corre-
sponding 3-D points are.

in the image is the following one:

Obstacle Detection (OD) Algorithm 1.
• For each pixel p, determine the set Ip of pixels be-

longing to the double truncated triangle centered
in p. Define a scanning order for the points in Ip.

• Scan the points in Ip until a pixel pi compatible
with p is found, in which case classify p as an ob-
stacle point.

• If no such pixel is found, p is not an obstacle
point.

We managed to reduce the complexity of the algorithm
from quadratic to linear in N. Note, however, that there is
the possibility that a pair of points (p1,p2) are tested
twice. If α is the proportion of obstacle points in the im-
age, and K is the average number of points in each pro-
jected triangle on the image plane, then each point which
is not an obstacle requires 2K tests, while an obstacle
point requires on average min{2K, 1/α} tests. Assuming
that 1/α < 2Κ, the expected number of tests is equal to
2N((1-α)K+1).

Let us now introduce a second strategy, which does not
require duplicate tests:

OD Algorithm 2.
• Initialization: classify all pixels as non-obstacle.
• Scan the pixels from bottom to top and from left to

right; For each pixel p:
• Determine the set Up of pixels belonging to only

the upper truncated triangle with lower vertex in
p (see Figure 4).

• Examine all points in Up, and determine the set
Sp of points pi∈Up compatible with p..

• If Sp is not empty, classify all points of Sp and p
as obstacle points.

It is easy to see that each pixel is tested just once against
all the other points in the upper and lower truncated tri-
angles in OD 1. With reference to the quantities intro-
duced earlier, now NK tests must be performed over the

θΤ

θΤ

HT

θΤ

Figure 3: 3-D obstacle search method using
double cone that locates ground pixels
(brown) & obstacle pixels (blue).

θ Τ

θ Τ

H T

Im ag e P lanek /z0

k /z 1 k= f H m ax

y
z

x

Figure 4: Implementation of OD Algorithm 2 on
2-D image data using triangular projections.

image. Thus, if α< (0.5 + 1/K), the second algorithm re-
sults in higher computational efficiency. More impor-
tantly, a simple modification of this algorithm allows one
to easily segment obstacles in the image, as described in
the next section.
Figure 4 shows an illustration of our OD 2 algorithm,
where the search area in the image depends on the dis-
tance of the point from the image plane.

3. Obstacle segmentation
Definition 1 specifies only a sufficient condition for two
points to belong to the same obstacle, not a necessary
one. Two points may well belong to the same obstacle
without being compatible (for example, if the two points
are very close to each other.) In fact, the missing “if
only” part is implicitly defined by the following transi-
tivity property: if p1 and p2 belong to the same obstacle,
and p2 and p3 belong to the same obstacle, then p1, p2 and
p3 belong to the same obstacle. We maintain that two
points p1 and pM belong to the same obstacle if and only if
there exists a chain of point pairs (p1,p2),(p2,p3),…,(pM-

1,pM), such that all pairs (pj,pj+1) are compatible. We can
represent the set of points as the nodes of an undirected
graph (points graph); two nodes in the graph are linked if
they satisfy the conditions of Definition 1. Thus, two
points p1 and p2 belong to the same obstacle if and only if
there exists a path in the graph from p1 to p2. We can
extend this notion to define a single obstacle as a maxi-
mal connected subgraph (i.e., a connected component) of
the point graph.

Classical depth-first or breadth-first search algorithms
[Mehlholrn84] can find the connected components of the
points graph with complexity linear in (N+M), where M
is the number of edges in the graph. Note, however, that
our OD technique does not yield an explicit graph repre-
sentation, as required by classical connected component
algorithm. In the following, we discuss some possible
procedures for computing the connected components of
the points graph as it is being built in the loop of OD
Algorithm 2.

The first proposed algorithm is based on pixel re-
coloring:

Obstacle Segmentation (OS) Algorithm 1.
Modify the initialisation line of OD Algorithm 2 as fol-
low:
• Initialisation: Classify all image points as non-

obstacle; no image point is labelled; initialise the la-
bel graph to the void set.

The following instructions are added to the loop on the
points p in OD Algorithm 2:

• If no point in {p,Sp} was already labelled, color all
points in Sp and p with the corresponding label.

• Else, if just one point in {p,Sp} was already col-
ored, color p and all points in Sp with such a label.

• Else, there is a label conflict: two or more distinct
labels {l1,…,lL} are used for the same connected
component. Choose any such label (say, l1), and
find the set of pixels that have been already col-
ored with any label in {l2,…,lL}; change the label
of such pixels to l1.

OS Algorithm 1 always keeps the number of existing
labels small, so that the likelihood of label conflicts is
minimized. However, pixel re-coloring is an expensive
operation. Of course, one may use a hashing table, but
that requires a significant amount of additional memory.

The second proposed algorithm introduces an auxiliary
labels graph, whose nodes correspond to labels used to
color the nodes of the point graph.

OS Algorithm 2.
Modify the inizialization line of OD Algorithm 2 as fol-
low:
• Initialization: Classify all image points as non-

obstacle; no image point is labelled; initialize the la-
bel graph to the void set.

The following instructions are added to the loop on the
points p in OD Algorithm 2:

• If no point in {p,Sp} was already labelled, create a
new node in the labels graph and color all points in
Sp and p with the corresponding label.

• Else, if just one point in {p,Sp} was already col-
ored, color p and all points in Sp with such a label.

• Else, there is a label conflict: two or more distinct
labels {l1,…,lL} are used for the same connected
component. Color all unlabelled points in {p,Sp}
using any one of such labels (say, l1), and add
edges in the labels graph linking the nodes corre-
sponding to such labels. Re-color all pixels in
{p,Sp} to label l1.

When the procedure terminates, all nodes in the points
graph are labelled; the nodes belonging to any connected

θΤ

1

θΤ

θΤ

2

(a) (b)

θΤ
θΤ

1

θΤ

θΤ θΤ

1
2

(b) (d)
Figure 5: Labelling process during 3-D obstacle detec-

tion: (a) Obstacles for one ground pixel; (b) for second
ground pixel, (c) Merging of overlapping obstacles, and (d)
new obstacle label.

component of the labels graph represent the set of labels
coloring the nodes of one connected component of the
points graph. Thus, in order to identify all the obstacles
in the scene, one has to compute the connected compo-
nents in the labels graph. This operation takes a negligi-
ble amount of time if there are much fewer labels than
points in the image. Note that the operation of pixel re-
coloring within {p,Sp} in case of label conflict is not
strictly necessary, but it helps reduce the likelihood of
label conflict. In fact, we noticed that only a minimum
amount of over-segmentation is introduced if one ne-
glects to compute the connected components of the labels
graph (i.e., if each node of the labels graph corresponds
to one obstacle.)" Figure 5 shows the process of seg-
mentation/labeling of obstacles that occurs implicitly in
our 3-D obstacle detector. Figures 6 and 7 show exam-

ples of a synthetic and real example where disparate ob-
jects that touch in 2-D space, and therefore assigned to
one obstacle by a 2-D blob coloring procedure [Bel-
lutta00], are labelled with different colors using our OS
algorithm.

Having formalized the notion of points belonging to
the same obstacle, the role of the parameter Hmax should
now be clear. Hmax enforces separation of two obstacles
in those cases where pairs of points exist, one for each
obstacle, satisfying the slope condition but located far
apart. Typically, such situations arise from missing range
measurements (due, for example, to poor stereo matching
quality.) Rather than linking two obstacles when there is
not enough range information, the first condition in Defi-
nition 1 keeps such obstacle separated. Note in passing
that larger values of Hmax imply larger triangles in Figure
4, and therefore higher computational complexity. On the
other side, too small a value for Hmax could be liable for
missing many obstacle points. An interesting case is rep-
resented by obstacles which are not connected to the
ground (e.g., concertina wire). For the wire to be detected
as an obstacle, Hmax should be at least as large as the
height of the wire with respect to the ground.

4. Spatial Resolution of 3-D obstacle detector
In order to evaluate the efficacy of our 3-D obstacle

detector, it is important to realise the spatial resolution
limitations of our algorithm. The spatial resolution de-
termines how close two obstacles can be and still be
segmented as two different objects. This information is
critical when the terrain is densely occupied by non-
traversable obstacles, in which case the gaps between
two obstacles should be accurately located to allow
autonomous navigation and effective movement of the
vehicle in such densely occupied landscapes.

If the search height of the cone in 3-D space is Hmax, as
specified earlier, our algorithm classifies any two occu-
pied pixels that are separated by a horizontal distance of
2Hmax/cos(θT) with the same obstacle label. Therefore,
two different obstacles that are at least Hmax in height and
separated by a horizontal distance of more than
2Hmax/cos(θT) are assigned different labels by our 3-D
obstacle detector. This implies that the spatial resolution
for obstacles that are at least Hmax in height is

2Hmax/cos(θT). For obstacles of height H lesser than
Hmax, the spatial resolution of our algorithm is much bet-
ter; it is 2H/cos(θT) for obstacles with lower height.

If the width of the vehicle W is lesser than the spatial
resolving power of the algorithm, then our algorithm
would safely and accurately locate all visible, traversable
paths in the terrain. This is generally true for autonomous
cross-country vehicles, such as the HMMWV or the
URBIE robot testbeds used at JPL. In practice, the range
estimates from stereo or laser-range sensors is corrupted
by noise and susceptible to measurement/estimation er-
rors, especially for points far from the sensor. This is
further magnified by errors due to incorrect sensor cali-
bration. Therefore, the spatial resolution of our 3-D ob-
stacle detector is typically worse than the theoretical lim-
its discussed here.

4.1. Parameter selection in 3-D obstacle detector

As discussed in Section 2 earlier, our 3-D obstacle de-
tector involves searching a cone region around each point
in 3-D space for the presence of an obstacle. If the
ground terrain is flat (horizontal), obstacle search at a
point (x0,y0,z0) at a distance z0 from the image plane
would involve searching an area corresponding to the

Figure 7: Obstacle labelling and segmentation

Image Plane

12

Figure 6: Obstacle labelling in our 3-D obstacle
detector where adjacent obstacle points in 2-D im-
age space (green, blue pixels), but distant in 3-D
space, are assigned unique labels.

projection of the cone on the 2-D image, which is an in-
verted triangle of height Hi = (HT) f/z0 (whose vertex is
(x0i,y0i) in the image I as x0i = x0 f/z0, y0i = y0 f/z0), and
with vertex angle 90- θT, as shown in Figure 4 earlier.
This is the region Up in OD 2.

However, in reality, the terrain is uneven, and many
ground pixels in the terrain do not lie on the camera
plane. Additionally, the camera plane may not be hori-
zontal if the vehicle is on a slope. Therefore, the projec-
tion of the cone will change with terrain elevation varia-
tions.

We analyse the change in projection of the 3-D cone
along each spatial dimension x,y as the terrain configura-
tion changes. When the terrain is flat, the projection (re-
gion Up in OD 2) is a triangle with a horizontal base of
height (HT) f/z0. If the terrain is sloped, or the camera
plane tilted, it is possible that the cone generatrix (the
slanted line with angle θT) becomes parallel to the camera
plane. In such a case, the region Up is a slanted triangle
whose base is at angle θT with the horizontal. The hy-
potenuse of the triangle is parallel to the vertical axis of
length ((HT

2/cos2(θT)) + HT
2)½ f/z0; this is larger than (HT)

f/z0 for a projection of a cone on a ground plane that is
horizontal and at the same elevation as the image plane.

Similarly, if the camera/vehicle, or a ground plane
segment were tilted from the x-axis, the hypotenuse of
the projected triangle could be parallel to the x-axis,
thereby yielding a projection of size (HT

2cos2(θT) + HT
2)½

f/z0 along the x-axis.
Therefore, the shape and size of the search region Up

varies with terrain orientation. In practice, we use a
square search window at least of size (HT

2cos2(θT) +
HT

2)½ f/z0 for our 3-D obstacle detection to accommodate
all possible terrain variations. Typically, a window of
about 4-5 times the minimum size is employed to ensure
that valid obstacles are not discarded due to spatial reso-
lution limitations of the estimated range-from-stereo data.

5. 3-D Shape Reasoning for Obstacle Classifica-
tion using Rule-based Classifier

As discussed earlier, our 3-D obstacle detection algo-
rithm automatically segments the obstacles to yield an
unique label for each obstacle in 3-D space. This facili-
tates the use of 3-D shape and geometrical measures to
effectively reject spurious false obstacles that may have
been detected.

3-D shape reasoning techniques have been used in ro-
botics in the past. Sutton et. al. [Sutton98] have used 3-D
shape reasoning in robotics by building detailed 3-D
models of an object from range data, followed by shape-
reasoning to label the object's potential functionality. A
model-based 3-D geometrical reasoning scheme for land
vehicles has been used [Marti96] where prior scene
knowledge with a generic 3-D model of the expected
scene and the potential objects is compared with the ac-

tual scene to do 3-D obstacle classification. Both these
techniques require detailed prior knowledge of the ob-
jects and the scene which is not expected in real terrain
navigation scenarios, and 3-D model-matching which is
computationally demanding. In [Crisman98], stereo data
is used to locate edges and corner targets for wheelchair
navigation in relatively uncluttered, flat urban environ-
ments. In another approach [Hoover98], a planar bound-
ary representation space envelope models the empty, un-
occupied volumes in the scene. Reasoning about the
scene's content using surface geometry and topology is
used to determine the number of visible objects. All these
methods require creation of a 3-D model, possibly by
converting the 3-D point data into a mesh representation,
which is a complex operation and often not suited for
real-time applications that have limited computational
resources. We compute 3-D geometrical features from
the raw point-cloud data, which enables real-time analy-
sis.

In our initial research efforts, we extracted five simple
3-D geometrical measures from each obstacle. This in-
cluded the perimeter of the 3-D bounding box for an ob-
stacle, the average slope of the obstacle and relative
height from surrounding background, the maximum
slope, and the maximum relative height of an obstacle
from surrounding regions. These geometrical measures
are automatically derived during the obstacle segmenta-
tion process, without any extra computational overhead.
Thresholds are assigned to each of these five 3-D meas-
ures. If any of the five variables have a value less than
the pre-selected thresholds, it is rejected as a false obsta-
cle. For example, all obstacles with an average slope
lesser than 2.5, or maximum slope lesser than 5.0 were
classified as false-obstacles. Our rule-based classification
therefore rejects obstacles with small bounding volume,
average/maximum slopes, or average/maximum relative
height.

Our new rule-based 3-D shape reasoning and classifi-

(a) (b)

(b) (d)

Figure 8: (a), (b) Obstacle regions before and (c),(d)
after 3-D rule-based false obstacle removal.

cation is expected to outperform prior 2-D based obstacle
reasoning methods [Bellutta00] that used 2-D area infor-
mation (not 3-D geometrical measures) to reject small-
sized false obstacles. In many cases, an object that occu-
pies a small number of pixels in the 2-D image does not
imply the presence of a false obstacle, or conversely a
large 2-D pixel area does not signify the presence of a
true obstacle. False obstacle regions that are close to the
camera could occupy a large number of pixels, and true
obstacles far away from the camera could occupy a sig-
nificantly small area.

Figure 8a shows a road with surrounding natural ter-
rain and telephone poles. The initial 3-D obstacle detec-
tion algorithm locates all true obstacles (telephone poles,
trees, etc.), but also locates false obstacles on the flat
road on the upper left and upper right parts of the image
(due to incorrect range from stereo measurements), as
shown by the overlaid blue regions in Figure 8a. The
corresponding segmented obstacle label image is shown
in Figure 8b. Our rule based classification evaluates the
3-D geometrical measures for each detected obstacle, and
correctly rejects the false-obstacles on the road that have
low average/maximum height and bounding volumes, as
shown by the new labeled data in Figure 8c. The overlaid
true obstacle image after our rule-based classification is
shown in Figure 8d, where the red regions are the re-
jected false obstacle regions.

6. 3-D Obstacle Detection: Results and Com-
parisons

We present results on several types of terrain using our
new 3-D obstacle detector. These are compared against a
prior obstacle detection technique [Bellutta00] that used
slope measurements along image columns and 2-D area
measures for obstacle detection. As mentioned earlier,
this prior technique is not expected to work well on ter-
rain that contains obstacles that slope along the image
plane, rather than vertically downwards along image col-
umns. Figure 9 shows an example of terrain that contains
two mounds to the right of the camera with slanted
slopes. Figure 9a shows the true detected obstacle regions
using our new 3-D obstacle detection algorithm in blue
and the corresponding obstacle labels are shown in Fig-
ure 9b. The 2-D obstacle detection algorithm [Bellutta00]
results are shown as blue regions in Figure 9c, and the
rejected obstacle regions are shown in red. As seen, all of
the closest mound and much of the larger mound obsta-
cles are not detected due to the columnwise scanning
technique used. Additionally, parts of the smaller mound
are rejected (red regions) since a 2-D blob area measure
is used to reject small obstacles. Note that the previous
obstacle detector using 1-D elevation profile fails to
detect the two mounds due to the fact that the estimated
slope of this 1-D range profile is not equal, in general, to
the true slope of the visible surface, as seen in the eleva-

tion map in Figure 9(e), and the 1-D elevation profile in
Figure 9(f).

Figure 10 shows an image of a road with obstacles
(telephone poles, and trees) on the side. Our 3-D obstacle
detector locates all obstacles effectively (blue regions in
Figure 10a), and the 3-D rule-based geometrical classifi-

(a) (b)

(c) (d)

(e) (f)

Figure 9: Obstacle regions located using (a), (b) our 3-
D obstacle detector and (c) prior 2-D obstacle detec-
tor; (d) Range, and (e) elevation maps, and (f) 1-D
elevation profile.

(c) (b)

(c)
Figure 10: Obstacle regions located using (a), (b)

our 3-D obstacle detector and (c) prior 2-D obstacle
detector

cation rejects false obstacles that are located along the
flat road (red regions in Figure 10(b)). In contrast, the
prior 2-D obstacle detector is unable to reject false obsta-
cles on the road due to the 2-D pixel area measure used.
A large false obstacle region is also incorrectly located
on the upper right side of the image.

Figure 11 shows natural terrain with a tall bush on the
right, a negative obstacle in front of the camera, and trees
in the background. Our 3-D obstacle detector locates all

the obstacles effectively, and rejects false obstacles near
the foot of the bush, and in the grassy terrain beyond the
negative obstacle. In this case, the 2-D obstacle detector
performs comparably, even though parts of the trees in
the background are not correctly detected. Note that our
3-D obstacle detector correctly distinguishes between the
bush and background trees and assigns unique labels to

each (Figure 11(b)), even though they overlap/touch in
the 2-D image. This allows for combined color/texture
and shape-based classification that could correctly clas-
sify low bushes as traversible obstacles. A 2-D obstacle
detector on the other hand would label all touching pixels
(including the background trees and bush) as one single
obstacle, that would result in overall misclassification if
color/texture and obstacle shape data were fused.

Further results on a terrain with a large non-traversable
mound is shown in Figure 12b,c. The prior obstacle de-
tector is unable to detect the mound at all (Figure 12d)
since it’s normal does not intersect the slicing plane Π
defined by the column points of the image plane and the
focal point of the camera. A few sections that are de-
tected are discarded as false positives in the area-based
blob removal stage.

The last results (Figure 13) show a narrow path in a
wooded area along a trail lined with bushes. These

bushes are correctly located as obstacles along with the
trees as seen in Figure 13b,c. The 1-D obstacle detection
algorithm (Figure 13d) misses the bushes on the right,
which is not critical since these bushes are small. Fusion
of color with shape-based reasoning is expected to result
in classification of the small bushes on the right as traver-
sable, which will simplify navigation of the vehicle along
narrow paths.

7. Conclusions and Future Work
In this effort, we have detailed a new 3-D obstacle de-

tection algorithm for locating and segmenting obstacles
in the scene for autonomous terrain vehicle navigation,
and a new 3-D reasoning algorithm to reject false obsta-

(a) (b)

(c)
Figure 11: Obstacle regions located using (a), (b) our
3-D obstacle detector and (c) prior 2-D obstacle de-
tector.

(a) (b)

(c) (d)

Figure 12: Obstacle regions in image (a) located using
(b), (c) our 3-D obstacle detector and (d) prior 2-D ob-
stacle detector.

(a) (b)

(c) (d)

Figure 13: Obstacle regions in image (a) located using
(b), (c) our 3-D obstacle detector and (d) prior 2-D ob-
stacle detector.

cles. The 3-D reasoning technique uses geometrical
measures that are automatically derived from the 3-D
obstacle detector without any extra computational over-
head. Results are presented on scenes of natural terrain
that the military autonomous vehicle (HMMWV) is ex-
pected to traverse during day and/or night conditions.
Our technique is seen to outperform prior obstacle detec-
tion results currently used in real-time JPL autonomous
vehicles.

Further improvements to our 3-D obstacle detection
and reasoning algorithm will include fusion of shape-
based and color or texture information to better classify
surrounding terrain into different terrain types
(dry/normal vegetation, bush, grass, rocks, telephone
poles, fences, etc.). This would enable better classifica-
tion of traversable objects (small-medium bushes, low-
lying grass, tall grass), and non-traversable objects
(rocks, poles, trees, tall bushes, steep slopes). Our
method can be extended to analysis of multiple frames as
the vehicle moves, where incremental 3-D obstacle de-
tection and reasoning could be applied to successive
frames to update detected obstacles swiftly.

The 3-D obstacle detector is currently being integrated
with a dynamic terrain modeling simulation tool where
knowledge of the class and geometrical structure of each
obstacle, derived from our obstacle detector, will be used
to model the dynamics of the load-bearing surface as the
vehicle moves over each traverseable object. This is use-
ful in velocity control and prediction of vehicle motion
over different terrain types for optimal, safe vehicle per-
formance and navigation.

Acknowledgements
The research described in this paper was carried out by

the Jet Propulsion Laboratory, California Institute of
Technology, and was sponsored by the DARPA-ITO
Mobile Autonomous Robot Software (MARS) Program
through an agreement with the National Aeronautics and
Space Administration. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not consti-
tute or imply its endorsement by the United States Gov-
ernment or the Jet Propulsion Laboratory, California In-
stitute of Technology.

8. References
[Bellutta00] P. Bellutta, R. Manduchi, L Matthies, K.
Owens, A. Rankin, “Terrain Perception for DEMO III”,
2000 Intelligent Vehicles Conference,, 2000.

[Broggi00] A. Broggi, M. Bertozzi, A. Fascioli, C.
Guarino LoBianco, A. Piazzi, “Visual Perception of Ob-
stacles and Vehicles for Platooning”, IEEE Trans. Intell.
Transport. Sys., 1(3), September 2000.

[Crisman98] Crisman, J.D.; Cleary, M.E.; Rojas, J.C.,
“The deictically controlled wheelchair”, Image and Vi-
sion Computing, vol.16, no.4, pp. 235-249, 1998.

[Hoover98] Hoover, A.; Goldgof, D.; Bowyer, K.W.,
“The space envelope: a representation for 3D scenes”,
Computer Vision and Image Understanding, vol.69, no.3,
310-29, March 1998.

[Lacaze98] A. Lacaze, Y. Moscovitz, N. DeClaris, K.
Murphy, “Path Planning for Autonomous Vehicles
Driving Over Rough Terrain”, 1998 IEEE
ISIC/CIRA/ISAS Joint Conference.

[Marti96] Marti, J.; Casals, A., “Model-based object rec-
ognition in man-made environments”, Proceedings 5th
IEEE International Workshop on Robot and Human
Communication. 358-363, 1996.

[Matthies94] L. Matthies, P. Grandjean. Stochastic
Performance Modeling and Evaluation of Obstacle De-
tectability with Imaging Range Sensors. IEEE Transac-
tions on Robotics and Automation, Special Issue on Per-
ception-based Real World Navigation, 10(6), December
1994.

 [Matthies96] L. Matthies, A. Kelly, T. Litwin, G. Tharp,
"Obstacle Detection for Unmanned Ground Vehicles: A
Progress Report", Robotics research 7, Springer-Verlag.

[Matthies98] L. Matthies, T. Litwin, K. Owens, A. Ran-
kin, K. Murphy, D. Coombs, J. Gilsinn, T. Hong, S. Le-
gowik, M. Nashman, B. Yoshimi, "Performance Evalua-
tion of UGV Obstacle Detection with CCD/FLIR Stereo
Vision and LADAR", 1998 IEEE ISIC/CIRA/ISAS Joint
Conference.

[Mehlholrn84] K. Mehlholrn, Data Structures and Effi-
cient Algorithms, Springer Verlag, 1984

 [Sutton98] Sutton, M., Stark, L., Bowyer, K., “Function
from visual analysis and physical interaction: a method-
ology for recognition of generic classes of objects”, Im-
age and Vision Computing, vol.16, no.11, pp. 745-763,
1998.

[Williamson98] T. Williamson, C. Thorpe, "A Special-
ized Multibaseline Stereo Technique for Obstacle Detec-
tion", IEEE CVPR'98, 238-244.

[Zhang94] Z. Zhang, R. Weiss, A.R. Hanson, "Qualita-
tive Obstacle Detection", IEEE CVPR'94, 554-559.

