
A Taxonomy forStereo Computer Vision ExperimentsMark W. MaimoneComputer Science DepartmentCarnegie Mellon UniversityPittsburgh, PA USAmwm@cs.cmu.edu and Steven A. ShaferMicrosoft ResearchMicrosoft Corp.Redmond, WA USAstevensh@microsoft.comhttp://www.ius.cs.cmu.edu/project/cil/tax/AbstractMuch of computer vision research is an attempt to solve the impossible: to acquire full three-dimensionalknowledge given limited two-dimensional data. The state of the art has advanced to a point where therenow exists a plethora of partial solutions to computer vision problems. We're getting lots of answers, butjust how accurate are they? A few methods provide an estimate of uncertainty with each answer, but thoseuncertainties do not tell us what we really need to know: by how much does the estimated answer di�er fromthe truth?If computer vision is to become more of an engineering discipline than craftwork [1], engineers must beable to predict and experimentally characterize the behavior of their systems. Such characterization is onlypossible when ground truth is available. Synthetically generated imagery gives total ground truth knowledge,but fails to model the complexities of real-world imaging. Real imagery provides better test data, but greatlyreduces the amount and density of ground truth available for analysis. In this paper we outline a framework forchoosing a reasonable trade-o� of ground truth density v. image realism in the analysis of stereo algorithms.1 OverviewThe characterization of a vision algorithm's performance is a tedious and di�cult task. This is primarily dueto the lack of appropriate performance measurement speci�cations. This paper will enumerate the scenarios andtypes of data that can be used, give examples of interesting properties of stereo vision systems, and explain howbest to measure them, in the sense of achieving the most accurate and representative ground truth.Table 1 illustrates some interesting properties of stereo vision data, and matches them with the scenarios inwhich they can be measured. Because many properties can be measured using any of several scenarios, only afew are likely to be needed for a particular analysis set. The list of rows in Table 1 is merely suggestive; otherproperties can be easily matched with the appropriate scenarios.A complete statistical framework to take advantage of this data is beyond the scope of this work (see [2] foran approach assuming unimodal disparity error). We will instead discuss the representation of the data and waysto acquire it, with the understanding that its most e�ective use will be in the context of a complete analysispackage. Such a package would measure interesting properties over several subimages, e.g., the whole image,occluded regions, non-occluded regions, pixels above a known ground plane, etc.Although comparisons of stereo algorithms have been done before, many have su�ered from a lack of availableground truth. One such study, the ARPA JISCT stereo evaluation [3], compared the results of four stereo methods.However, since ground truth was not available, most of their statistics dealt with agreement between the results;not \method A is 80% accurate", but \methods A and B agree on 80% of the image". Thus they could neitherevaluate stereo methods independently nor quantitatively characterize their performance. The study's conclusionstates in part that \Ground truth is expensive, but there is no substitute for assessing quantitative issues."
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Table 1: Stereo Imagery Characteristics and the types of scenarios for which they are available.Even those studies that included ground truth have been limited by available technology. An ISPRS study[4] compared the results of several stereo algorithms using ground truth, but in all but one image pair eachtrue pixel disparity was computed manually, without interpolation. Their manual collection of 23,000 total pixelcorrespondences from eleven 240 � 240 image pairs was a noble, not to say Herculean, e�ort, but we argue thatthe technology for the construction of ground truth images of complex scenes (with much greater density and lessrequired manual intervention) not only exists, but is easy to use.We demonstrate this claim by outlining a taxonomy of ground truth scenarios (abbreviated in the columnheadings of Table 1), and providing a concrete example for each level. Sections 2 through 7 present the scenarios,ordered by increasing realism and decreasing amount of ground truth, Section 8 describes the tools used toimplement these scenarios and their availability, and Section 9 summarizes our contribution.1.1 Representation of ResultsStereo vision is a powerful approach for computing 3D information, but unlike active range�nding systemsstereo works indirectly, by converting pixel correspondences into depth measurements. The quality and densityof the resulting depth map depends directly on the character of these correspondences.Unfortunately, even exact pixel correspondences alone rarely give a complete picture of the range map. Thisis due to several e�ects, e.g., nonoverlapping �elds of view in parallel and outward-verging cameras, self and halfocclusion of objects in the scene, and a lack of intensity variation in areas with bland texture. It is unreasonableto expect a correspondence-based stereo method to calculate completely dense depth maps, since even perfectpixel correspondences can leave gaps in their implied depth maps.How then should stereo data be represented? There are several possibilities, principal among them disparitymaps, depth maps, and object models. Researchers have reported stereo results using all of these representations,but each has its drawbacks. We would prefer to use a representation that allows di�erent stereo methods to be



compared on an equal basis. Object models are quite useful, but can only be computed from raw stereo data bymaking many model-based assumptions. Depth maps would be ideal, but require exact knowledge of the camerageometries (which may not be available), and cannot be completely computed from correspondences alone. Tocompare results computed from two images without requiring camera calibration information then, disparity mapswith occlusion masks are the most general representation.One need not eliminate metric information completely when providing disparity maps, however. By simplyincluding the parameters of the actual camera system in the dataset (e.g., baseline and camera focal lengths),disparity can be converted easily to depth when needed. Since depth resolution of a stereo system can be increasedsimply by adjusting the camera separation and/or focal length, the precision of a stereo method is often measuredin pixels (units of disparity) rather than Euclidean length (units of depth). But most applications will expressrequirements in depth units, so this metric information should still be kept available.The ground truth must also be expressed as a disparity map. This is accomplished by running the 3D groundtruth information through the appropriate camera model, to generate a depth map in the same coordinate systemas that of the image being matched. From here it is a simple matter to generate a disparity map, and we will seein Section 3.1 how to compute occlusion masks from disparity maps derived in this way.The model for stereo experimentation is thus to run the stereo algorithm, and compare the computed disparitymap with that of the ground truth known from other methods. This paper presents several scenarios and examplesof test data with ground truth, explains the bene�ts and limitations of each, and discusses some implementationissues that arose in the course of generating the sample data. Thus we demonstrate that the technology forcreating datasets with interesting properties and dense ground truth already exists, and is easy to use.2 The Basics: Mathematical FoundationsThe �rst scenario is that of continuous functions. When describing an algorithm, the �rst step should be todemonstrate the principle in the simplest possible domain. In stereo vision, the simplest case is typically thecomparison of two 1-D functions that represent scanlines. There is often much insight to be gained by focusingattention to a level of detail in which all quantities can be interpreted directly.This is the level at which the general principles of an algorithm can be demonstrated. At this point it is notnecessary for the inputs to have precisely the same qualities as those present in actual discrete imagery. Indeed,using continuous functions as input can often simplify the presentation by allowing the solution to be expressedanalytically (in closed form) rather than operationally (e.g., \the result after 10 iterations") as in [5] [6].This level of description is also useful for discerning and describing any theoretical limitations of the method,e.g., the points at which its assumptions break down.2.1 Example 1: Phase di�erence as disparityThe use of phase di�erence as disparity lies at the heart of many phase-based stereo algorithms [6] [7] [5] [8].But unless one is already quite familiar with the frequency domain, the name itself inspires fear. Suppose oneremained uncertain of the underlying principles; how could you convince yourself that the technique really works?By considering the simplest possible examples according to the representation, and following the processing stepby step.In this example we are interested in studying how the phase of a sine wave relates to stereo disparity. So considerthe simple case in which the left and right image scanlines are both sinusoids. A one-dimensional sinusoid is ingeneral completely determined by three parameters: amplitude (A), frequency (!), and phase (�).Sinusoid: A sin�2� ! x� � �For this demonstration we will �x the amplitude A at 1, frequency ! at 18 , phase of the left image at 0, and allowthe right phase � to vary freely:L(xL) = sin�2�8 xL� R(xR) = sin�2�8 xR � �� (1)Stereo disparity is the amount of shift required to make the left and right images appear equal. While ingeneral the disparity in an image will vary at every pixel, in our example all pixel disparities will be equal (thisactually happens in a real image whenever a planar surface is viewed head-on, so it is a realistic assumption
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2Figure 1: Disparity as a function of Phase Di�erence. Disparity is the horizontal separation between the twosignals, and is indicated by the labeled bar just to the left of 0.for this demonstration). Mathematically, disparity is the di�erence between the left pixel index (xL) and theright pixel index (xR). So we �nd disparity by setting the formulas in Eq. 1 equal and solving for this di�erence(=b denotes equality modulo b): sin�2�8 xL� = sin�2�8 xR � ��2�8 xL =2� 2�8 xR � �Disparity := xL � xR =8 � 82�� (2)Thus we see that disparity is indeed related to the di�erence of the left and right phases (remember the leftphase is zero in this example). Figure 1 graphically shows the disparities that result from particular values of theright function's phase. You can convince yourself that the mapping from phase to disparity works by pluggingthe values of � into Eq. 2 and comparing the answer with the amount of shift visible in the graphs of Figure 1.This example also illustrates an important issue in the design of phase-based stereo techniques: phase-wraparound. In interpreting Figure 1, we knew the phase di�erence was relatively small (i.e., less than 2�),so the disparity could be computed directly. But the disparity formula in Eq. 2 is only de�ned modulo the wave-length of the sine wave. This means we cannot compute a unique disparity from a single phase value; at thisfrequency, disparities of 1, 9, 17, ... all appear equivalent. This is an important observation: when evaluatingany phase-based stereo method, be sure to consider how it addresses the problem of phase-wraparound. Someauthors use a coarse-to-�ne approach to alleviate it [7] [5], others choose to ignore it [6] thus restricting them-selves to �nding only small disparities. Our solution combines phases from several �lters at arbitrary frequenciessimultaneously, so instead of wrapping around at the wavelength of the smallest or largest �lter, our estimateswrap at the least common multiple of all wavelengths that comprise the signal (this is typically larger than thesize of the image, and thus tends to yield a unique result) [9].This simple, direct analysis has resulted in several important insights: an understanding of the basic technique,and an appreciation for an important property of all phase-based stereo methods.Limitations: While this level of demonstration is important in communicating the intuition behind analgorithm, it has many limitations. The most obvious is that when images are processed only discrete samples



are measured, since images have a �xed resolution. So this general description must be restated in more concreteterms that take the limited resolution into account. Also, while a purely mathematical scene description is easyto reason about, complex scenes would require such detailed modeling that constructing a continuous versionwould be too cumbersome.3 Noiseless Synthetic ImageryThe next scenario is that of discretely sampled synthetic imagery. Having established basic principles usingcontinuous functions, the generalization of the method to complete images must be characterized. The broadeningof attention from minute pixel-level details to those encompassing entire objects can also yield important insights.For these purposes synthetic data prove most useful. Such data may also be used to verify the implementationof an algorithm on full-sized images.Synthetic images can be generated by any means, but should initially be created according to a model of theimaging environment in which an algorithm will be deployed. This model should come as close as possible toapproximating the real world, though for the moment a noiseless environment should be assumed. In particular,objects being \imaged" should have 3D structure, and should be rendered using the same model as that assumedby the algorithm. For stereo vision this model will typically include full perspective projection, e.g. the pinholelens model. Use of computationally simpler imaging models such as orthogonal projection or linear (a�ne)warping, should be avoided except in providing data for debugging an algorithm that makes that assumption.This task is not as di�cult as it might seem: the Computer Graphics community has developed many realisticrenderers, some of which are freely available and easily modi�ed [10].The camera model used by the synthetic image generator should be as similar as possible to that used inthe actual laboratory camera calibration. Using the same model makes it possible to close the loop; 3D infocomputed from real imagery can be re-rendered from the same (now virtual) camera position. Figure 5 showshow useful this can be: the 3D locations of dots in a real image of a calibration grid are rendered according tothe computed camera model, and overlaid on the real image. Such tools can make inspection and validation of3D reconstructions much easier.Perfect ground truth is also quite helpful in debugging. While this may seem a trite truism, the di�culty ofdeveloping image processing software and the current lack of integrated matrix debugging environments have dis-couraged vision software developers from adopting this approach of using full-sized image ground truth. Yet freelyavailable software can provide arbitrarily complex test cases that can help the debugging process tremendously.The following example demonstrates how complete ground truth pointed out the 
aws in a common techniquefor generating occlusion masks.3.1 Example 2: Occlusion MasksDepth maps in complex scenes are typically discontinuous, and therefore di�cult to reason about analytically.Also, when opaque objects are imaged from di�erent viewpoints, portions of those objects will be visible onlyin one image. For these reasons it becomes important to provide occlusion masks with stereo ground truth:correspondence-based stereo algorithms cannot be expected to predict accurate disparity in areas where no cor-respondence exists.Occlusion masks are binary images that indicate which pixels are visible in both images of a stereo pair. Theyare de�ned relative to a pair of viewpoints: screen pixels in one viewpoint are occluded if the 3D point theyrepresent is not visible from the other viewpoint. How can occlusion masks be generated? One method thatworks nicely with synthetic data is to simply place a point light source at the focal point of the second viewpointand re-render the scene [11], taking care to turn o� interre
ections and translucence. Pixels with zero intensityare then marked as occluded. However, if the pixel subsampling should di�er between the image and occlusionmask renderings, border pixels may be labeled incorrectly.Another method works directly with the depth map used in the construction of the synthetic image. The toprow of Figure 2 shows a sample stereo pair of images and their disparity maps. A popular technique in stereoalgorithms computes occlusion masks by performing a pointwise comparison between the disparity maps for theleft and right images. Any corresponding pixels whose disparities are not equal in magnitude and opposite in signare marked occluded by this method [12]. While this is a useful approximation, it often fails at object boundariesbecause of steeply-sloped surfaces, as illustrated by the results in the middle row of Figure 2. Since this algorithmproduces noisy results even with absolutely correct disparity maps, a more robust approach is clearly needed.



Resolution used for 
oating point comparison: 1.0 pixels
Resolution used for 
oating point comparison: 0.1 pixelsFigure 2: Occlusion Mask Generation: Top Row: Stereo pair of images from the Left and Right cameras; actualdisparity maps for those images. Middle Row: Pointwise occlusion masks for left and right images (note especiallythe noise in the right mask around the object borders); disparity maps with pointwise occlusion masks overlaid.Bottom Row: Plane-�tting occlusion masks for left and right images; disparity maps with plane-�tting occlusionmasks overlaid.There are two main problems with the pointwise method: sharply sloped surfaces may cause the correspondingpixels to point to the same surface but at very di�erent depths, and arbitrary pixel sampling may cause borderpixels to point to the wrong object entirely. We can address these problems by �tting a plane to each pixel in thedisparity map. If each scene object has an extent of at least two pixels, then it is reasonable to assume that for agiven pixel, the 2� 2 surrounding window with the least variation in depth will be the appropriate surface patch(see Figure 3). We compute each pixel's best plane by �nding that 2� 2 window which has the least variation indepth (i.e., for which max2�2(disparities) � min2�2(disparities) is minimized). This window selection thereforehelps avoid the pointwise method's error of pointing from a slanted surface to the wrong object.The problem of varying depth on a surface is addressed by using the range of disparities found in the 2 � 2surrounding window selected above. Instead of comparing disparity values directly, the disparity in one imageis compared to the range of values contained in the 2 � 2 window surrounding its correspondent. In practise,we found that extending the measured range by 100% on either side allowed us to increase the 
oating pointresolution of the comparison from 1.0 pixels in the pointwise method to 0.1 pixels. That is, two values areconsidered equal if they di�er by at most this amount.It should be possible to extend this notion to arbitrary viewpoints. The key point is to perform the range check



Figure 3: Finding the best-�t plane in the disparity map. There are four 2x2 windows that contain the center(dark) pixel; the upper right window is highlighted.using normalized inverse depth. When the optical axes are parallel, this simply means using the disparity. Giventwo arbitrary viewpoints, the same term Bf=depth can be used, though it will no longer represent the magnitudeof the disparity. Converting the depth values from one viewpoint to another will require the application of thecomplete camera models from both views (not just the linear translation/rotation matrix), but this should poseno problem with synthetic data since both camera models are known exactly and an analytic inverse of theperspective projection is easily coded. This use of arbitrary viewpoints is important for many extensions tothe standard stereo model of parallel optical axes: verged cameras, multibaseline stereo, and arbitrary motionbetween frames.In summary, the use of synthetic data enabled the elucidation of noise-causing e�ects in a popular stereomethod of generating occlusion masks. We also showed how those e�ects could be mitigated by using a newmethod of �tting planes locally, and how this method can be extended to a completely general 3D case witharbitrary viewpoints.This problem is also important to the Computer Graphics community, where occlusion masks are used asshadow maps. However, their goal is to �nd the amount of incident light over a large area, not to �nd individualpoint matches. Most shadow map methods simply smooth over pointwise matches to even out the shading e�ects[11] [13].Limitations: Though useful for validating software integrity, noiseless synthetic imagery cannot be used tomeasure robustness to noise, an inevitable problem with real imagery.4 Synthetic Imagery with NoiseA good way to characterize the robustness of a method is to take known data and introduce noise alongindependent dimensions of the imaging model (e.g., gaussian or focus distance blurring, white noise, lightingintensity, camera misalignment). Using synthetic imagery, the amount of error introduced along each dimensioncan be quanti�ed precisely, and the degradation of an algorithm according to a particular type of noise modelcan be determined.This type of data can be quite useful in experimentally characterizing an algorithm's performance, providingengineers with a quantitative measure of robustness. The ability to track performance loss as a function of noiseis an important parameter in engineering design.4.1 Example 3: Virtual CheckerboardFigure 4 illustrates some types of noise that can be easily modeled using synthetic data. The top row containsperfect data, computed as described at the beginning of Section 3. As before, we have a perfect disparity mapwith the occlusion mask in black (in this �gure it is computed for the rightmost image). The middle rows illustratehow typical noises a�ect image formation; here the left image is shown modi�ed according to each particular type



Stereo Image Pair Disparity MapPerfect DataPoint Light Source 0.025 0.05 0.1Focus Blur (aperture:radiusfocus distance ) 1.0 2.0 4.0Gaussian Blurring(� in pixels) 1� 2� 4�Optical Axis Rotation(degrees) 0.5 0.25 0.125Light Source(intensity fraction)
Increasing NoiseAll types of noise in the column

Figure 4: Examples of noise easily modeled with synthetic data.



of noise. When actually performing experiments both images will be modi�ed, and the original disparity mapused as ground truth. The e�ect of each type of noise is quanti�ed by comparing the disparities computed fromeach noisy image pair against the known (constant) ground truth and measuring residual error. In this way therobustness of the algorithm to various types of noise can be estimated, and statistics derived by applying thesame noise models to many synthetic datasets and tracking overall error. These noise e�ects can be combinedarbitrarily; the bottom row of Figure 4 shows some examples.Limitations: While these types of experiments are useful for calculating robustness along particular dimen-sions, they will nevertheless fail to address all the possible e�ects of real-world imaging. Multiple extended lightsources, complex interre
ections, nonlambertian objects, complex shapes, and errors introduced in the imagingprocess are extremely hard to model precisely, yet they a�ect every image. Synthetic data are useful for sim-ple validation and characterization, but for algorithm performance veri�cation there is no substitute for actualimagery.5 Controlled EnvironmentThe most useful stereo datasets are those with real imagery and 100% ground truth. Having used syntheticdata to establish correctness and characterize robustness along particular model dimensions, one can move on toreal images of controlled scenery. This introduces many unmodeled errors in the lighting, camera and optics, butallows them to be characterized by highlighting di�erences between the disparity map known from the groundtruth and that computed by the algorithm.Several types of noise are introduced here that are typically not modeled in synthetic imagery. The CCD arrayis subject to preampli�er noise, dark current, shading e�ects, and photon noise [14]. Optical e�ects also becomeapparent: radial and tangential lens distortions, poor overall focus due to lens manufacturing errors and dust,and misalignment of the lens with the CCD array. Perhaps most importantly, e�ects such as the interaction ofcomplex light sources with the objects being imaged and the sheer complexity of actual scenes introduce artifactsinto real imagery that must be treated as noise by systems that fail to model them.Some measurement errors can be compensated for in preprocessing. For example, one common problem withstereo imagery is a di�erence in gain between the two cameras. The problem is manifest as very di�erentbrightness, or distributions of pixel values between the two images. This e�ect can arise from many causes, e.g.,di�ering apertures on the two lenses and specular highlights on the objects. Yet a simple histogram equalizationcan bring these distributions closer and make matching easier.To acquire this type of data the shapes of the objects being imaged must be precisely known. This informationideally will be acquired using methods other than vision, since our objective is to evaluate the quality of a vision-based reconstruction. This can be accomplished by machining an object to precise speci�cations (as is often donewith calibration targets), or by measuring the dimensions of existing objects with known shape (e.g., the spherein [15]).Camera calibration is also a requirement for collecting accurate ground truth. Even if the shapes of objects inthe scene are known, their absolute distance and orientation will be unknown. Camera calibration informationshould be computed even if the stereo algorithm being evaluated does not make use of it, to aid in the computationof dense ground truth. Euclidean camera calibration will enable quantitative analysis of the algorithm's precision.5.1 Example 4: Calibration TargetsA common application of totally structured environments is the acquisition of camera calibration parameters, aswill be described in Section 5.2. Most camera calibration techniques depend on the reliable extraction of 2D featurepoints from images, and many require precise 3D localization of features in the world as well. Since industrialapplications often allow the scene environment to be manipulated during calibration, a common technique is toconstruct (and position) a target using these constraints:1. The target must contain many feature points,2. Those points will be spread throughout most of the camera's �eld of view when imaged,3. The points can be easily located by simple image processing techniques, and4. The 3D locations of the feature points are known to a high degree of precision.



Figure 5: Actual image of the Calibrated Imaging Laboratory (CIL) calibration target with virtual renderingoverlaid. The grey background and grid of black dots are part of the original picture, the white dots are rendereddots located at the 3D grid point locations. The dots were rendered as spheres using a virtual camera with thesame parameters as those computed from the real image.

Figure 6: More sample calibration targets. The left image is the calibration cube from [17], right is an image ofthe MOVI (INRIA) \inverted cube" calibration pattern from [18].Figure 5 shows a sample calibration image used in the Tsai-derived calibration procedure developed by Willson[16], and used in this work as well. The target is a grid of black dots on a 
at white background, each dot oneinch from its horizontal and vertical neighbors. The center dot has been whited out to provide a reference spot forinterimage registration. This 
at target is mounted on an accurate translation stage, so by imaging it at severallocations many 3D calibration points may be acquired. Because the 3D structure is known, the 2D extractedfeatures are easily mapped into a 3D representation. To demonstrate how well the 3D representation �ts with theoriginal data, some of the recovered 3D feature points have been rendered as white spheres using the computedcamera model (via a computer graphics ray tracer), and overlaid onto the original image in Figure 5. Thisprojection back into 2D agrees nicely with the original data.Figure 6 shows some more calibration targets. While CMU's Calibrated Imaging Laboratory (CIL) target fromFigure 5 must be imaged at several locations to sweep out a 3D volume, these other targets have inherent 3Dstructure. Shum's cube [17] (leftmost in Figure 6) is useful because its regular structure means it can be imagedfrom any angle and still provide a number of features. The disadvantage is that this regularity implies therewill always be some ambiguity when matching feature points from di�erent cameras, especially if the camera



separation is large and the optical axes all intersect within the target. The MOVI \inverted cube" target [18] onthe right su�ers no such ambiguity, because its faces are joined at di�erent angles (the vertical faces are joinedat approximately 120 degrees). It is an \inverted" cube because it resembles an o�ce corner: the angles betweenits visible faces are closer to 90 degrees than to the 270 degree angles found on a cube. A useful property of thistarget and the CIL target is that either may be left in place during later experiments and can thus provide usefulground truth for the background pixels.Construction of calibration targets can be a di�cult and expensive task. The MOVI target in Figure 6 is a setof precisely-machined metal plates, and the CIL target in Figure 5 is a PostScript �le printed in high resolutionon laminated and self-sticking paper, mounted on posterboard and attached to a metal frame on an automatedtranslation stage.Having seen examples of real objects built to precise speci�cations, we now outline the procedure required toput them to good use.5.2 Camera CalibrationThe task of determining in general how 2D image points correspond to 3D scene points is accomplished byassuming a camera model and performing camera calibration. First the correspondence between a representativeset of 2D and 3D points is determined, then the parameters of the chosen camera model that best �t those dataare found.Typical camera models comprise external (or extrinsic) and internal (or intrinsic) parameters. Some commonexternal parameters are X, Y and Z axis translations and rotations, and common internal parameters includeimage center, thick/thin/pinhole lens focal lengths, lens distortion coe�cients, and aspect ratio. In astronomicalimage processing, lens models must also compensate for speci�c manufacturing defects by imposing a dense gridof coe�cients over the lens surface, to model the point-spread function at each pixel or small group of pixels.Computer vision lens models tend to be much simpler, requiring only a few parameters. This is largely due to thefact that in computer vision, objects can be moved close enough to the camera to compensate for the small-scalelens defects that astronomers are forced to model.Some calibration techniques require 3D information [19] [16] [20], some use correspondences between imagesto compute the stereo epipolar geometry without complete Euclidean knowledge [21] [22], and others controlor restrict camera motion instead [23] [24] [25]. We will summarize here the requirements for the �rst type ofprocedure (e.g., the one described in [16, Chapter 5]) for acquiring Euclidean geometry without restricting cameramotion, and then extend it to include the acquisition of arbitrary ground truth in Section 6.5.2.1 De�ne and Register Coordinate FramesThe �rst step is to de�ne and register all coordinate frames. The eventual goal is the acquisition of imagery andco-registered ground truth of well-understood objects. Thus the mapping between images and the world must bemodeled to perform the calibration and ground truth registration. This is purely a representational issue, andis used to determine the types (i.e., units) of measurements that will be used in both the calibration and dataacquisition steps below.To relate imagery to the real world, there are four reference frames of interest: 3D object coordinates, 3D worldcoordinates, 3D viewing coordinates, and 2D screen coordinates. These are illustrated in Figure 7 along with arange frame (explained in Section 6). The shape of every object in the scene is described in its own coordinatesystem, each of which is related to a single world coordinate frame. World coordinates are related to viewingcoordinates by the external parameters of the camera model (translation and rotation), and viewing coordinatesare related to screen coordinates by the remaining internal parameters. In many cases the dataset collectionprocess can be streamlined somewhat by equating the world reference frame with the calibration target's objectcoordinate frame.Speci�cation of a coordinate system comprises the directions of the axes, the unit of length along each axis,and the location of the origin. Choosing 2D screen coordinate axes is relatively straightforward: the axes pointhorizontally and vertically along the CCD array, the units are typically pixels, and the origin is either a cornerof the image, the center pixel of the CCD, or is speci�ed by the internal calibration parameters. Speci�cation ofthe remaining 3D frames will depend upon the application, but the units of the viewing coordinate Z axis willtypically be the same as the depth estimates computed by the stereo algorithm, and each set of coordinate axeswill usually be orthogonal.
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Figure 7: Coordinate frames used in dataset acquisition.The parameters that relate these coordinate frames are calculated during the camera calibration process.5.2.2 Establish Calibration Target and Scene ObjectsThe 3D structure of the calibration target and scene objects must be determined to the best resolution possible,typically on the order of a millimeter or some fraction thereof. This can be accomplished by measuring existingobjects or by manufacturing new ones. The calibration target should satisfy the constraints given in Section 5.1,but most importantly will ideally sweep out the entire volume of the area to be imaged: not just the volume ofthe target, but also that of any textured background areas. An easy way to do this is to use a 
at or concavecalibration target that occupies the entire image, and leave it in the background while imaging the scene objects.Software that extracts features and builds an internal CAD model of everything in the scene must be devel-oped concurrently with the physical construction of the calibration target and scene objects. These pieces arecomplementary; e.g., the speci�cations for the target should be driven by the capabilities of the software. Featurepoints on the calibration target should be constructed so that their image locations can be accurately measuredto subpixel resolution. For example, the targets shown in Section 5.1 all use circular feature points for whichthe centroid can be determined to subpixel precision [16, Appendix D]. The software must be able to robustly�t extracted features to the target's known 3D structure, allowing for those distortions that will inevitably occurdue to the as-yet unmodeled camera parameters. Although this process is often performed manually (and shouldalways be manually veri�ed), by automating it a substantial bottleneck in dataset acquisition can be avoided.The costs of establishing a good calibration target and creating recognition software will be easily recovered,in terms of both resources and time, in the form of more accurate measurements and faster dataset acquisition.However, the construction of scenes with complete ground truth is not always possible. For outdoor scenes inparticular, the cost of constructing a large enough calibration target and acquiring completely dense ground truthis often prohibitive. The best way to approximate this is to construct models in a laboratory and adjust the lensparameters to simulate outdoor imagery, or compromise the results by using a calibration target smaller than thescene being imaged and acquiring only sparse ground truth such as will be described in Section 6.5.2.3 Acquire Calibration Imagery and CalibrateAn integral part of the calibration process is the acquisition of several images of the calibration target. Beforeacquiring the calibration imagery, however, the layout must be checked to ensure that the scene images willaccurately re
ect the desired properties of the scene. The lighting levels must be set, the camera parametersadjusted (e.g., lens aperture, exposure time, focal length), the objects positioned, and some sample imagery taken(both with and without the scene objects). Performing this run-through prior to acquiring the calibration imagerywill help ensure that the data collected will measure the properties actually found in the dataset scene imagery.The calibration data should be acquired under the same conditions as the later scene imagery. Therefore the



camera parameters should be established with both the scene objects and calibration target in mind. For example,when using a target with a white background the aperture must be adjusted so that the calibration imagery isnot overexposed.No matter how many images in the dataset, some calibration target feature points must be visible from allviewpoints. The target should be �xed in one place if possible, to facilitate the inter-image registration that mustfollow. If the target is moved to accommodate multiple viewpoints, then this transformation must also be knownto high precision.Although the 3D structure of the calibration target and any scene objects are assumed to be known, anindependent measurement of the objects (or feature points) can provide a useful sanity check. Tools such as thosedescribed in Section 6, if available, could be put to good use in such redundant measurements.Finally, images of the calibration target and the corresponding camera locations (if known) are recorded.These images, the inter-camera transformations, and known structure of the calibration target are all input tothe camera calibration procedure.Camera calibration itself occurs in two steps. First, calibration features are located in the images and mapped totheir corresponding 3D world coordinates. This is best accomplished with calibration target-recognition softwareas described in the previous section. In the second step, these data points (image coordinate and world coordinatevector pairs) are fed into the calibration routine, which uses them to determine the parameters that best �t thecamera model.Once the camera calibration parameters have been computed to a reasonable level of precision, images of theactual scene objects may be taken.5.3 Acquire Dataset ImageryFinally, the actual stereo datasets can be acquired. The cameras are positioned in the same locations andorientations as were used for the calibration, and with the same settings (e.g., aperture, focal length, and gain).This can be achieved (with di�culty) by building a stable multi-camera head (e.g., as in [26]) or a single cameraplatform with highly reliable positioning capabilities (e.g., [16, Appendix A]. In addition to imagery, completelydense ground truth will also be acquired for each camera.The best tools for performing the ground truth measurement will vary with the application. One possibilityis to use image-based �tting just as was done with the calibration target. But this technique limits the types ofobjects that can be imaged to only those with software robust and precise enough to do the �tting. Another is touse measurement tools such as those described in Section 6 below to locate key features in 3D world coordinates,and apply the known object shape to �ll in the details. In this case the ground truth measurements need only beacquired once since they are expressed in the world coordinate frame; the �nal result for each camera is computedby simply applying the external parameters for that camera to the world coordinate measurements.Finally, these completely dense depth maps can be processed as described in Section 3.1 to yield occlusionmasks for the resulting disparity maps.Limitations: By controlling the environment, completely dense ground truth may be acquired along with realimagery. However, this approach is very restrictive. The hard work of constructing scenes so that precise groundtruth is available over an entire image limits the approach to relatively simple scenes. If the eventual applicationwill include complex scenes as well, imagery of more complex scenes with ground truth must be developed.6 Measured EnvironmentAdding a range sensor to the laboratory allows images of complex static scenes to be acquired with groundtruth. But by relaxing constraints on the objects to be imaged, the acquisition of complete ground truth becomesuntenable. Some information is available, e.g., piecewise-planar patches can be measured, but most of the imagerywill have unknown ground truth. Even so, this is an important scenario, because it comes the closest to theapplication of the method outside the laboratory, while still providing some measure of con�dence in the resultssince at least part of the disparity map can be computed precisely. It is generally no longer possible to compute thecomplete occlusion mask however, because often the missing disparities are exactly those at occlusion boundaries.But at least some of the disparities computed by the stereo method can be veri�ed.Object shape knowledge and range sensors are used to acquire the ground truth. The locations of feature pointsin the scene can be measured using pointwise devices such as surveyor's theodolites. Theodolites measure anglesrather than distance, but with two theodolites and a simple calibration step, pairs of measured angles can bedirectly converted to 3D coordinates. By choosing feature points e�ectively, dense depth maps can be computed



using knowledge of the shape of the objects in the scene. For example, when imaging polyhedral objects, cornerpoint locations can be interpolated to yield dense depth maps over the objects' surfaces.Why not just use an imaging range�nder? Range�nders are indeed useful tools, and could be used to providesome ground truth information, but there are limits. Even a perfectly accurate range�nder would not providean exact depth map unless it were co-located with the imaging elements. The scienti�c use of range�ndersis still being studied, and even some popular LIDAR laser range�nders are subject to outright errors in theirmeasurements, particularly at occlusion boundaries [27], which makes them unreliable sources of information forevaluating the e�ect of occlusion on stereo data. Image-based range�nders that use controlled lighting togetherwith the same CCD array could be very useful in some laboratory situations (see [28] and [29] for two image-based range sensors), but would likely depend on the same camera calibration methods used in the stereo method,resulting in \ground truth" measurements that have some of the same biases as the stereo method.6.1 Camera and Range Sensor CalibrationData acquisition at this level requires calibration of both the range sensor and the camera. Camera calibrationwas described in Section 5, but the additional requirements and some example datasets are described below.6.1.1 Calibrate Range SensorGround truth measurements are acquired by introducing a range sensor into the laboratory. Placement and useof the range sensor is complicated by the fact that its use must not interfere with the acquisition of stereo data.Completely dense ground truth measurement will be impossible, for unless the range sensor uses the same CCDelements as the stereo cameras, it cannot be co-located with them, and will therefore be unable to view all thesame points.One choice for range sensor is a pair of surveyor's theodolites. A theodolite is an optical measurement toolconsisting of a lens system, stable platform with levels, and instrumentation that measures the angle between aninitial direction and that of a point in the world. Angles are converted to distance measurements by combiningangles from two theodolites with the known baseline between the instruments and then triangulating. This systemhas the desirable properties that it provides range measurements independent of the stereo camera equipment,and makes no restriction on the type of objects that can be measured (except that some features must be visibleto each theodolite).Determining the best separation for the theodolites is di�cult. The best resolution in depth measurementswill be obtained with a wide baseline separation, but when the theodolites are too far apart there will be manypoints near occlusion boundaries that are not visible to both theodolites. This will limit the number of pointsfor which ground truth can be measured, thus reducing the density of the �nal depth map. Therefore it isimportant to coordinate the placement of objects, including the camera calibration target, with the positioningof the theodolites.6.1.2 De�ne and Register Coordinate FramesAs in Section 5.2.1, the four types of coordinate frames (screen, viewing, world, and object) must be de�nedand registered. In addition, the coordinate frame of the range sensor must also be determined (see Figure 7).This is typically done by locating features on the calibration object using the range sensor, and computing thetransformation between the range frame and the calibration object frame.6.2 Acquire Imagery and Range Data ConcurrentlyFinally the actual datasets can be acquired. Because the recommended range sensor requires a long time togather measurements, only static scenes may be imaged.6.3 Example 5: Textured CubeAn example of a dataset from the literature that bene�ts greatly from even sparse ground truth is the texturedcube from [30]. This dataset consists of one stereo image pair, from which an image is reproduced in Figure 8.Since each face is known to be planar, only a few points need to be measured to acquire reasonably dense groundtruth.Xiong does in fact use the known planarity to characterize the shape of this object, but instead of takingindependent distance measurements he �ts planes to the computed disparities on each face. Thus he is able to



Figure 8: Textured cube image and the piecewise-planar patches used by Xiong for error analysis [30, Figure3.20]. Used with permission.

Figure 9: Image from CIL-0001 dataset with the locations of ground truth measurements.quantify his algorithm's ability to recover shape information from stereo disparity, using the residuals from theplanar �t as the error measure.6.4 Example 6: Model Train SetFigure 9 illustrates a sample image of a more complex scene with sparse ground truth, taken from the publiclyaccessible CIL-0001 dataset.1 The scene includes many complex surfaces, few of which are absolutely planar,yet some reasonable approximations can be made. For instance, planes can be �t to those roofs where cornerlocations are available, and to the front faces of the houses and castle towers. The background pixels can also be�lled in completely, since the shape of the background grid is known from the camera calibration.The precision of these ground truth measurements is derived in the following section.1http://www.cs.cmu.edu/~cil/cil-ster.html
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Figure 10: Region of error. The greatest possible error occurs across one of the Target Area diagonals (seeFigure 12 for a close up).6.5 Theodolite Error AnalysisBoth stereo disparity and ground truth measurements have �nite precision which should be made explicit.As a �rst step toward extending our notion of ground truth to include this precision, we present in this sectionan analysis of the resolution obtainable using surveyor's theodolites in their present con�guration as part of theCalibrated Imaging Laboratory (CIL).The Calibrated Imaging Laboratory theodolites [31] can repeatably measure angles to within about 20 secondsof arc. That is, during a single test run, an individual can repeatedly aim the theodolite site at a target, unlockit, then aim again and be con�dent that the di�erence between successive measurements will never be more than20 seconds.We would like to know how accurate subsequent X-Y-Z computations can be, under this limitation. A simpletwo-dimensional (X-Z) analysis will give us a rough idea of the magnitude of the precision in the horizontalplane. Figure 10 shows the overall model: depending the angles measured, the computed depth D might lieanywhere within the shaded region. Since that region is polygonal, we know that the largest possible error (i.e.,the maximum distance between any two points in the region) will occur between the endpoints of one of its twodiagonals. Just how long are the diagonals? To determine that, we need to derive equations for the horizontaland depth coordinates.6.5.1 Deriving equations for the coordinate axesFigure 11 shows the geometry of the scene. We will treat the two theodolites (as well as the target) as points.� is the angle measured by the left theodolite,  is that measured by the right. B is the length of the baselinebetween the two theodolites; the baseline is split in two at the projection of the target point: B = L+ R. D isthe distance from the baseline to the target point. If we de�ne the left theodolite to be the origin of a coordinatesystem with horizontal axis along the baseline, we have D as the vertical depth coordinate, and L as the horizontalcoordinate.Now we need to express D and L as functions of the two angles and baseline alone. The left and right anglesbear a simple relationship to the two baseline components:L = D tan � and R = D tan (3)Recalling that L and R sum to the baseline B, we have by substitution:B = L+R = D (tan � + tan )
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Figure 12: Target Area Precision (zoom in on Figure 10): the largest error is the length of one of the diagonalsh and v.Which gives us a solution for the depth coordinate D that depends only on angles �,  and the baseline:D = Btan � + tan (4)To solve for the horizontal coordinate L, simply plug this expression for D back into Equation 3:L = B1 + tan( )tan(�) (5)So now we have both the horizontal coordinate L and depth coordinate D. Without loss of generality, we assumethe baseline is a constant factor and write D = d(�;  ) and L = l(�;  ). Now we can compute the lengths of thetwo diagonals in the Target Area; the larger one will give us the maximum possible error.To compute the lengths of the diagonals h and v (shown in Figure 12), we �nd the Euclidean distance betweentheir endpoints. Call the theodolite measurement error �: for the CIL theodolites � is 2000. Then the length ofthe \horizontal" diagonal h (it's not really horizontal) is:
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Figure 13: Error Space for � = 2000 with unit baseline: depth error v(�;  ) is greater than horizontal error h(�;  )for all but the nearest points (when the sum of the angles is greater than about 90 degrees)h(�;  ) =p(d(�;  � �)� d(� � �;  ))2 + (l(�;  � �)� l(� � �;  ))2 (6)The vertical diagonal v (it's not really vertical) is computed in the same way:v(�;  ) =p(d(� � �;  � �)� d(�;  ))2 + (l(� � �;  � �)� l(�;  ))2 (7)Now we're done; the length of the horizontal diagonal is the maximum error in the horizontal direction, thevertical diagonal is the maximum error in depth. All that remains is to plug in the measurement error � = 2000.6.5.2 ResultsIn the current laboratory con�guration, the theodolite measurements will vary from 10 to 70 degrees, if allobjects of interest lie on or above the object optical table. Figure 13 shows the shape of the error surface for thiscon�guration, with � = 2000 and assuming a unit baseline. How do we interpret this?The largest error in Figure 13 is about 0.0015, when both theodolites have angles of 10�. What does this reallymean? Assuming a baseline of 86.1 inches (219cm), it means an object 6:21m away can only by measured towithin 3:3mm.2 However, the far end of the optical table is only about 3m away from the baseline, and accordingto the model the center point on the far edge gives angles of about 20� for each theodolite. The error for thoseangles is 0.0004, which means the best precision for the far end of the table is 0:876mm= 0:0004 � 219cm. Thusit's safe to say our theodolite measurements over the optical table are in general accurate to within a millimeter.Nearer measurements have better accuracy. For example, in the CIL-0001 Stereo Dataset the left horizontalangles range from 41 to 50 degrees, and right angles from 31 to 42 degrees. The maximum error in that range is0:296mm = 0:000135 � 219cm.26:21m= 2:19mtan 10�+tan 10� and 3:3mm= 219cm�0:0015



It is in fact possible to compute the precision at each point. Simply plug the angles measured into the errorterms de�ned above. Or to estimate the precision for a whole region, run the code in Figure 14 through theGNUplot package with appropriate limits (instead of 10� to 70�), and visually pick out the largest error.d2r = pi / 180.0hor(x,y) = 1/(1+tan(x * d2r)/tan(y * d2r))ver(x,y) = 1/(tan(x * d2r) + tan(y * d2r))d = 20.0/3600splot [10:70] [10:70] \sqrt((hor(x-d,y-d)-hor(x,y))**2 + \(ver(x-d,y-d)-ver(x,y))**2) title "Depth Error", \sqrt((hor(x-d,y)-hor(x,y-d))**2 + \(ver(x-d,y)-ver(x,y-d))**2) title "Horizontal Error"Figure 14: GNUplot commands that generated Figure 13Limitations: The acquisition of ground truth requires that static objects be imaged in a controlled environ-ment. However there are many applications for which dynamic imagery is required, and stereo systems must betested using comparable data. The requirements for these data imply that no ground truth will be available.7 Unconstrained ImageryThe �nal and heretofore most common type of stereo data is that for which no ground truth is made available.The di�culty with such data is that the disparity maps computed by stereo algorithms cannot be assessedmetrically, only by human inspection or by ground truth expressed in pixel units.A common application for this is autonomous navigation. In a typical scenario the acquisition of ground truthis impractical, due to the sheer volume of data being processed. But at least one group has attempted to addressthis, by simulating road conditions using a static outdoor scene with explicit �ducial marks.38 ImplementationOur work has bene�ted greatly from the use of stereo datasets with ground truth. Data from each level of thistaxonomy has been used in the research performed in our laboratory. Both synthetic and real imagery were usedto develop algorithms, debug their implementations, and characterize their performance. Several examples aregiven throughout this paper.Rayshade, a freeware ray tracing program, provided the foundation for the synthetic datasets used throughoutthis paper. Several enhancements were made to adapt this tool to the task of providing stereo datasets withground truth: automatic depth map extraction, extension of the camera model to include con�gurable imagecenter and radial lens distortion, addition of back-end tools for depth map manipulation, disparity and occlusionprocessing, and image format interchange. These extensions and their documentation have been made freelyavailable to the research community.4Software developed for the Calibrated Imaging Laboratory (CIL) has been successfully used in the collection ofstereo datasets with ground truth by several researchers. Camera calibration tools originally developed by Willson[16] have been improved and made more robust, with the result that the time required for dataset acquisition hasbeen reduced from days to minutes. These tools, though somewhat speci�c to the CIL, are readily available tolaboratory members and visitors.The datasets collected in this laboratory are among the �rst of their kind to be made available to generalresearch community: high-quality images with piecewise-dense ground truth.1 Publications by other researchersusing these datasets have already appeared in peer-reviewed publications, e.g., [32].3The Link�oping University Division of Computer Vision provides a small calibrated outdoor dataset atftp://isy.liu.se/images/calib.ic/4See the Computer Vision Source Code web page at http://www.cs.cmu.edu/~cil/v-source.html.
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