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GLOBAL TASK-AWARE FAULT DETECTION IDENTIFICATION FOR
ON ORBIT MULTI-SPACECRAFT COLLABORATIVE INSPECTION

Akshita Gupta*, Yashwanth Kumar Nakka†, Changrak Choi‡, and Amir
Rahmani §, ¶

In this paper, we present a global-to-local task-aware fault detection and identifi-
cation algorithm to detect failures in a multi-spacecraft system performing a col-
laborative inspection (referred to as global) task. The inspection task is encoded as
a cost functional H that informs global (task allocation and assignment) and local
(agent-level) decision-making. The metric H is a function of the inspection sensor
model, and the agent full-pose. We use the cost functional H to design a metric
that compares the expected and actual performance to detect the faulty agent using
a threshold.We use higher-order cost gradients H to derive a new metric to identify
the type of fault, including task-specific sensor fault, an agent-level actuator, and
sensor faults. Furthermore, we propose an approach to design adaptive thresholds
for each fault mentioned above to incorporate the time dependence of the inspec-
tion task. We demonstrate the efficacy of the proposed method emperically, by
simulating and detecting faults (such as inspection sensor faults, actuators, and
sensor faults) in a low-Earth orbit collaborative spacecraft inspection task using
the metrics and the threshold designed using the global task cost H.

INTRODUCTION

Spacecraft swarms enable a new class of flexible and adaptive missions including collaborative
inspection,1, 2 and in-orbit construction.3 Progress in miniaturization and CubeSat technology4 has
further boosted the interest in a technology demonstration of distributed measurement on missions
like MarCo5 and GRACE.6 The multi-spacecraft mission approach offers intrinsic robustness to
faults through reconfiguration and improved science data returns through cooperation and collabora-
tion. While multi-spacecraft missions have many advantages, they require complex communication
architectures, leading to potential fault propagation. For example, in a leader-follower configura-
tion, any large disturbance in the motion trajectory of one of the followers propagates through the
network, leading to network shape deformation. Another example is in a distributed sensing ap-
plication; if one of the agents behaves in an adversarial manner, the neighboring agents follow the
misbehavior due to the underlying consensus framework.

A fault detection, isolation, and recovery (FDIR) architecture is essential to accommodate po-
tential faults at both the network and individual agent levels to continue the mission with graceful
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Figure 1: Global task-aware fault detection and isolation for a distributed spacecraft netwrok.

degradation. In this work, we present a new FDI method, as shown in Fig. 1, that detects the failure
at the network level using an abstraction of the global task objective H and local sensing informa-
tion and informs the agent level FDIR algorithm to perform necessary actions for recovery. For
example, a fault at the network level could be due to communication loss, a global task sensor fault
(for inspection task), a global task actuator fault (for on-orbit construction), and a fault at the agent
level could be due to thruster or reaction wheels. We propose a simulation vs. real comparison us-
ing the H and its higher-order gradients. We detect the fault by computing the off-nominal behavior
from the expected global task objective H by monitoring the individual task using a residual vector
sensitive to the agent’s faults. The global task objective H is designed to be a function of the state of
agents in the network and a model of the task sensor (for inspection) or actuator (for construction).
The residual vector is a function of the local relative state estimates of the agents in the network.
We propose a metric that computes the deviation of the H from the expected performance, which is
used as an indicator for faults at the network level, and uses higher-order derivatives of H to infer if
the agent-level faults, as shown in Fig. 1.

Earlier work7, 8 includes FDI architectures for distributed sensor networks using a local decentral-
ized observer to detect internal agent sensors or actuator failure. Recent work9, 10 uses adaptive or
reconfiguration control with minimal notion of network task to achieve fault tolerance. We instead
focus on incorporating global task objectives to inform the local FDIR to react or respond appro-
priately to continue the mission autonomous to the best possible capability of the network while
maximizing the global task objective H. Furthermore, while most of the earlier work11, 12 on FDI
for distributed systems focuses on simple linear dynamical systems, we focus on low-earth orbit
formation flying dynamics that includes periodic orbits.

The main contributions of this work are as follows: 1) we propose an architecture for FDI in a
multi-agent spacecraft system that integrates global-task objectives and local-agent level behaviors
for task awareness, 2) we derive a global cost functional that is decomposable to cost functions that
inform local progress and intermediate consensus on global progress, 3) we propose a novel FDI
metric based on the global cost H and the high-order derivatives of the H to detect and identify both
the global and local faults.

We apply our FDI architecture to a recently proposed multi-agent collaborative spacecraft inspec-
tion mission1, 2 in a low Earth orbit to detect failures in the inspection sensors and individual agent

2



sensing. The cost function H defines the global inspection progress by fusing individual agent sen-
sor data measurements. The inspection data fusion runs at a fixed frequency ωg, and the network
fault diagnosis is run at frequency ωFDI. We assume that agents communicate with each other only
when within the communication radius, leading to a time-varying communication topology and
sensing graph. The proposed method is capable of handling the time-varying graph and intermit-
tent communication. We demonstrate that the proposed menthod can detect and identify the faults
while keeping track of the global task. This approach is essential to inform the recovery procedure,
described in our recent work,13 for designing new orbits and pointing trajectories to complete the
mission.

The paper is divided into four sections: 1) overview of the GNC architecture for the multi-agent
collaborative inspection; 2) problem description and an outline of the potential faults at both the
global task level and agent level; 3) discussion of the proposed approach and the derivation of the
metrics and the threshold for fault detection and identification; and 4) preliminary implementation
and simulation results.

OVERVIEW OF GNC ARCHITECTURE FOR INSPECTION

In this section, we give a brief overview of the collaborative low-earth orbit inspection frame-
work proposed in our earlier work.2, 14 Using this framework we design optimal Passive Relative
Orbits2, 15 (PROs) and attitude trajectories for N observer spacecrafts, inspecting M Points of In-
terest (POIs) on a target spacecraft, by solving the following information-based optimal control
problem.

Problem 1 Information-Based Optimal Control Problem

min
p,ui

∫ tf

0

 M∑
j=1

H(p, sj) +
N∑
i=1

∥ui∥

 dt (1)

s.t.


Dynamics Model : ṗi = f(pi,ui)

Safe Set : pi ∈ P, ∀i ∈ {1, . . . , N}
Inspection Sensor Model : zi,j = h(pi, sj) + ξ, ξ ∼ N (0,Σh(pi, sj)) ,

(2)

Points of Interest : sj ∀j ∈ {1, . . . ,M} (3)

where
∑

j H(p, sj) is the information cost,
∑

i ∥ui∥ is the fuel cost, pi is the full-pose of the
observer spacecraft, sj is the full-pose of the jth POI on the target spacecraft. The inspection
sensor model in Eq. (3) outputs the value of interest zi,j , when the ith observer with pose pi is
inspecting a POI at sj . Minimizing the information cost

∑
j H(p, sj) ensures that the inspection

task is complete.

We decompose the Problem 1 to derive a hierarchical GNC algorithm (for details refer to our ear-
lier work14). The hierarchical algorithm uses the information-cost and the sensor model to select the
informative PROs and attitude pointing vector for each agent. We optimize the informative PROs
and attitude plan for optimal orbit insertion, reconfiguration, and attitude tracking using an optimal
control problem formulation that computes minimum fuel trajectory using sequential convex pro-
gramming approach. In this work, we use the information cost to keep track of the task progress
and detect off-nominal behaviour of the multi-agent system and the individual agents. We describe
the cost functional used to compute the information gain in the following.
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Information Gain. To quantify the information, a prior model of the target spacecraft is used
along with sampled points of interest (POIs) on the surface of the spacecraft. The cost function H
is designed to minimize the total variance on the knowledge of POIs. We use the cost function H
designed in,16 and is a function of POIs as given below.

HPOI(s) =

w−1 +
∑
p∈P

σ(p, s)−1

−1

H =
∑

s∈POIs

HPOI(s)ϕ(s), (4)

where s ∈ R3 is a POI on the target spacecraft’s surface, w ∈ R is the initial variance based on the
prior model of the target spacecraft, p ∈ SE(3) is the pose of a sensor mounted on a spacecraft
such as a camera, P is the set of all sensor poses, σ(p, s) estimates the variance of estimating POI
at s with the sensor at p, and ϕ(s) ∈ R is the relative importance of POI s.

The function σ(·, ·) corresponds to information per pixel. It incorporates sensor chracteristics
such as the current uncertainty of the spacecraft’s pose estimate, the accuracy of the sensor based on
the distance between p and s, or the lighting conditions. Here, we use a simple RGB camera sensor
and no environmental noise:16

σ(p, s) ∝

{
dist2(p, s) s visible from p

∞ otherwise
, (5)

where dist(p, s) is the Euclidean distance between POI s and pose p. We compute σ using visbility
checking. The offline solution to problem 1 is used to predict the nominal system behavior in terms
of the information-based cost Hnom over a finite time interval (1 or 2 orbits). As described in Fig. 1,
we precompute the nominal behaviour Hnom and compare it to the real-time behaviour H over the
time hotizon t as follows: ∫ t

0
(H−Hnom)dt ≥ ∆Hthresholdt. (6)

If the real-time value deviates from the nominal behavior by a threshold ∆Hthreshold then a fault is
detected. In the following section, we discuss on how we modify the cost function to construct the
FDI architecture in Fig. 1.

PROBLEM DESCRIPTION

The goal of the work is to detect the global and local faults in a multi-spacecraft system perform-
ing global tasks such as: on-orbit inspection and on-orbit construction. The global behaviour faults
and local faults detected using the proposed approach are described in the following Figure 2. Note
that the global behaviour fault for inspection task could lead to both deteriorating and improved
performance. The improved performance is due two reasons: 1) failure in the controller at the agent
level that leads to better exploration of the inpection target, and 2) suprious signals being communi-
cated by the neighbours. The deteriorating performance is due to failure in the inspection sensor or
the pointing controller of the spacecraft. The behaviour fault detection is used as an input to identify
the agent and the type of fault. The fault detection and identification problem addressed in this work
is summarized as follows:
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Figure 2: An overviwe of the type of global and local faults detected and identified using the
proposed FDI architecture, metrics and the threshold.

Problem 2 Given the nominal expected global task performance Hnom and the real-time perfor-
mance H, detect the global and agent-level faults in the multi-spacecraft system performing a global
task (collaborative inspection or construction). The global and agent-level fault tree is described in
the Fig. 2.

In the following sections, we describe the derivation of the metrics and threshold used in the two
FDIR blocks shown in Figure 2 for fault detection and identification.

GLOBAL TASK AWARE FAULT DETECTION AND ISOLATION

In this section, we describe the different components of the global task aware fault detection
and isolation algorithm that solves the Problem 2. This section describes the different components
of the fault detection system. We first describe the derivation of the attribute required to detect a
faulty spacecraft and the gradient-based fault metric is derived. Finally, we discuss the design of
thresholds for detecting and identifying different types of fault.

Global Task Cost Functional

We use a centralized monitering system that utilizes only the information cost updates and im-
plicitly the variance updates of the POIs being shared on the communication network during the
collaborative inspection process by the individual spacecraft to detect off-nominal behaviour and
identify the faults . At any given time instant t, each spacecraft i shares its local information cost
value Hi(t) with the central computing system. To determine the value of Hi(t) observe that from
(4), the centralized cost function is given as follows:

H =
∑
s∈S

HPOI(s)ϕ(s),

Where: HPOI(s) = (w−1 +
∑
p∈P

f(p, s)−1)−1.
(7)
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The above cost functional for individual POI can be decomposed into contributions from individual
agent Hi and a consensus term ψ(s) that is updated over fixed intervals of time.

HPOI(s) = (w−1 +
∑
p∈P

f(p, s)−1)−1

HPOI(s) = ψ(s)(w−1 +
∑
p∈P

f(p, s)−1)
(8)

where, ψ(s) = 1
(w−1+

∑
p∈P f(p,s)−1)2

. Therefore,

H =
∑
s∈S

ϕ(s)ψ(s)(w−1 +
∑
p∈P

f(p, s)−1)

H =
∑
s∈S

ϕ(s)ψ(s)w−1 +
∑
s∈S1

ϕ(s)ψ(s)f(p1, s)
−1

︸ ︷︷ ︸
H1

+ · · ·+
∑
s∈SN

ϕ(s)ψ(s)f(pn, s)
−1

︸ ︷︷ ︸
HN

.

H =
∑
s∈S

ϕ(s)ψ(s)w−1 +
∑
pi∈P

∑
s∈Si

ϕ(s)ψ(s)f(pi, s)
−1

︸ ︷︷ ︸
Hi

(9)

Using (9), the information cost for each spacecraft i is computed as Hi(t) =
∑

s∈Si
ϕ(s)ψ(s)f(pi(t), s)

−1

where ψ(s) is the normalization factor. This attribute not only tracks the performance of individual
spacecrafts, but also prevents the need to explicitly share information about the state of spacecrafts
over the communication channel inbetween the agents.

Note: The new formulation in Eq. (9) is a linear combination of the individual contributions by
each agent i at high frequency updates and intermediate consensus term ψ(s) that is updated at low
frequency. This decomposition, is useful in computing the performance of individual agent, and
design the metric and threshold using the individual agent contribution Hi.

Fault Metric

In this work, a gradient based metric is used to compare the actual progress made by individual
spacecrafts to the expected task progress in a finite time interval ∆t. Let Hpred

i (t) denote the
expected information cost for spacecraft i at time t, computed by the central computing system
using a simulation setup. Then the fault detection metric for a particular spacecraft is given as
follows:

Hmi(t) = abs

(
1− ∆Hi(t)

∆Hpred
i (t)

)
= abs

(
1− Hi(pi[t])−Hi(pi[t−∆t])

Hpred
i (pi[t])−Hi(pi[t−∆t])

)
. (10)

The above metric can be used to distinguish between whether a spacecraft is exhibiting faulty be-
havior or not as follows:

Hmi(t)

{
= 0 No fault
> 0 Fault has occured .

(11)

Note that the occurence of a fault can also improve the information gain, i.e., a faulty spacecraft can
perform better than expected. However, there is still a need to identify this type of fault because
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the spacecraft is not behaving as expected. The fault metric in (10) can also be used to determine if
the performance of a spacecraft has improved or deteriated. Defining x := ∆Hi(t)

∆Hpred
i (t)

, table 1 below

specifies the criteria to analyze the performance of a faulty spacecraft i.

Fault Case Condition

Deteriorating performance sign (∆Hi(t)) ̸= sign
(
∆Hpred

i (t)
)

;

sign (∆Hi(t)) = sign
(
∆Hpred

i (t)
)

and x < 1

Improved performance sign (∆Hi(t)) = sign
(
∆Hpred

i (t)
)

and x > 1

Table 1: Identifying spacecraft performance under fault.

Fault Type

The primary goal of the centralized FDIR system is to identify the faulty observer spacecrafts in
the network. This work is primarily focused on detecting actuator and sensor faults in the space-
craft. In the GNC architecture, an actuator fault can either occur during the state propagation of a
spacecraft or during the optimal sensor placement to observe the target POIs.

In the former case, the faulty spacecraft doesn’t follow its assigned orbit, thereby changing the set
of POIs which it observes. Such a faulty observer behaves as a rogue spacecraft or can collide with
another spacecraft in the vicinity. In the latter case, the onboard sensor fails to accurately point at
the POI with maximum variance. Both these fault cases will cause a change in the information gain
computed by the observer. In the case of a sensor fault, the variance in observing a POI is different
than expected.

Figures 3 and 4 demonstrate the effect of different types of actuator faults on the global infor-
mation gain H, as well as the fault signal for different observer spacecrafts. The actuator faults are
simulated on the observer spacecraft 0 by adding a random noise to the state of the observer and
the pose of the onboard sensor, respectively. In Fig. 3 the occurence of actuator fault improves
the global system performance since the true value of information gain is lower than the expected
value. The corresponding plot for the fault signal shows a value of 0 for non-faulty observers and
a value of 1 for the faulty observer. This is consitent with the conditions in (11). Figure 4 shows
a similar behavior when the actuator fault is implemented during sensor pointing. In this case the
global system performance deteriorates.

The above fault cases show that the proposed fault metric performs as expected. However, there
is still a need to determine an appropriate threshold to distinguish between system noise and a
fault. The occurence of actuator faults cause a change in the pose pi(t) of a spacecraft. From the
formulation of the global cost H in (9), it is explicitly clear that a change in pose pi(t) of a spacecraft
will effect the variance in observing a target POI. There is also a more subtle dependence of the set
of visible POIs, Si(t), on the pose of spacecraft, since the field of view of the onboard sensor will
change w.r.t. the spacecraft pose.

Let Spred
i (t) be the expected set of visible POIs for spacecraft i at time t. Then, to compute a

fault threshold, it is first necessary to construct a set of POIs S ′
i(t), such that

0 < |Hi(S
′
i(t))−Hi(Spred

i (t))| ≤ |Hi(Si(t))−Hi(Spred
i (t))|, ∀Si(t) ⊂ S. (12)
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Figure 3: real-time vs. Expected cost under actuator attack I (left); Behavior of fault signal (right).

Figure 4: Real-time vs. Expected cost under actuator attack II (left); Behavior of fault signal (right).

The fault threshold for individual spacecrafts can be computed as

τi(t) = abs

(
1− Hi(S

′
i(t))−Hi(Si(t−∆t))

Hi(Spred
i (t))−Hi(Si(t−∆t))

)
. (13)

Equation (13) is used to construct adaptive fault thresholds for individual spacecrafts, where an
actuator fault is detected in spacecraft i if Hmi(t) > τi(t).

IMPLEMENTATION AND RESULTS

Computing the set S ′
i(t) in (12) can become computationally intractable with increasing number

of POIs. Therefore, a sampling based approach is taken to approximate the set S ′
i(t) by randomly

pointing the onboard sensor within an ϵ−neighborhood of the target POI. Figure 5 demonstrates the
construction of this ϵ−neighborhood, where the onboard sensor vector is randomly pointed to any
point in the ϵ−neighborhood, thereby changing its FOV and the visible set of POIs. For actuator
faults, the value of ϵ can be estimated by analyzing ∂pi

∂ui
for the system.

The fault detection framework was incorporated in the simulation setup for the hierarchical plan-
ning algorithm.2, 14 During the orbit assignment phase at time t, the central agent determines the

8



expected set of visible POIs, Spred
i (t), for each spacecraft i. This is used to compute the nominal

behavior, Hi(Spred
i (t)), for each spacecraft during a fixed time period of 2 orbits. The fault thresh-

old, τi(t), for each spacecraft is also computed during the orbit assignment phase. In the following
plots, 10 target POIs were sampled in an ϵ−neighborhood around the POI with maximum variance,
for each spacecraft. The sampled set S ′

i(t) which gives the minimal value for τi(t) determines the
fault threshold for spacecraft i at time t. At the local agent level, each spacecraft receives its orbit
assignment and tracks the progress of its local information cost, Hi(t), while propagating the next
2 orbits. At the end of this fixed time interval, each spacecraft transmits its local information cost to
the central agent where the centralized FDIR algorithm detects any faulty spacecraft behavior using
the metric in (10).

Figure 5: Visible set of POIs for a spacecraft (left); ϵ−neighborhood constructed around POI with
maximum variance (right).

The performance of the above technique is tested on different types of actuator faults, as shown
in Fig. 6 and 7. In Fig. 6, an actuator fault is implemented during the state propagation of spacecraft
4. In this case, the overall task performance improves and the proposed faul threshold succesfully
detects the actuator fault. In Fig. 7, an actuator fault is implemented during the sensor pointing phase
causing the overall system performance to deteriorate. The proposed adaptive threshold detects the
fault after first few time instants.

Figure 6: Real-time vs. Expected cost under actuator attack I (left); Adaptive threshold for faulty
spacecraft 4 (right).

It is noted that the sampling based threshold design is susceptible to false negatives if the samples
are not uniformly distributed or the number of samples are not sufficient to construct a tight estimate.
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Figure 7: Real-time vs. Expected cost under actuator attack II (left); Adaptive threshold for faulty
spacecraft 3 (right).

Finally, designing a threshold for sensor faults depends on the hardware specifications.

CONCLUSION

This work presents a global-to-local task-aware fault detection and identification method for a
multi-spacecraft system. When coupled with a replanning method, the algorithm provides a frame-
work for graceful degradation in performance while ensuring mission completion. We derived a
gradient-based fault metric used by a central computing system to detect faulty spacecraft in the
system in a multi-agent collaborative task such as on-orbit inspection and construction. The fault
metric is derived using a global task cost functional that encodes the task of the swarm as a de-
composable cost functional for individual agents, while retaining the capability of having an inter-
mediate consensus among locally neighboring agents. This metric is implemented on a low-earth
on-orbit collaborative inspection to detect performance deviation from faults and identify the fault
type. Further, an adaptive fault threshold is designed to identify actuator faults in individual space-
craft. We demonstrate the approach on the inspection mission by detecting faults using only the
global cost metric and identifying the fault type using the higher order gradients of the cost metric.
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