
Improving Sequence Traceability During Testing and
Review for the Mars Science Laboratory

Jonathan Denison
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

jonathan.denison@jpl.nasa.gov

Mark Maimone
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

mark.w.maimone@jpl.nasa.gov

Abstract—While operating spacecraft, many teams break op-
erations planning into two processes. One process focuses on
planning for the upcoming cycle, while another process governs
the development of unique activities that require careful study,
testing, and review before they are ready for use in flight.
While developing unique activities that require extra testing and
review, teams often make use of testbeds on earth to ensure the
activity is well planned and that sequences of commands are
compatible with hardware and software configurations. Despite
careful tracking, it can be easy for mistakes to creep in before
sequence delivery and uplink while teams are testing and iterat-
ing over difference sequence versions. For example, a sequence
that required an update for success in the testbed could have
an earlier version inadvertently submitted to the flight sequence
database.

The Engineering Operations team for NASA’s Mars Science
Laboratory Curiosity Rover had a desire to improve the trace-
ability of these sequences as they are tested, reviewed, and
uplinked. This paper details the design, development, and
implementation of a new tool that uses the Sequence Checksum
to make it easier for operators to prove three key things during
the review process. First, that the sequences evaluated in the
testbed match what has been delivered to the sequence database
for use in flight. Second, that all sequences being delivered as
part of an activity were indeed tested. Third, that all sequences
necessary for activity completion have been delivered to the
sequence database. While this may be trivial to accomplish for
simple activities, keeping track of all this information can be
difficult for activities that include tens of sequences. This paper
will discuss the design and usefulness of the tool, and also the
overall activity review and approval process.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. STRATEGIC ACTIVITY BACKGROUND 2
3. SEQUENCE CONTROL AND DELIVERY 3
4. SEQUENCE COMPILATION AND UPLINK 3
5. THE SEQUENCE CHECKSUM . 4
6. THE TOOL: SENDIT . 6
7. CONCLUSION . 11
ACKNOWLEDGMENTS . 13
REFERENCES . 13
BIOGRAPHY . 13

1. INTRODUCTION
In the more than 12 years and 4300 Martian Solar Days (sols)
that the Mars Science Laboratory (MSL) project has been
using the Curiosity Rover to explore Gale Crater on Mars,

979-8-3503-5597-0/25/$31.00 ©2025 IEEE

a dizzying array of unique Engineering and Science activities
have completed successfully. The rover is commanded using
what are called Flight Software (FSW) Commands. FSW
commands allow the operators to command basic activities,
change parameterized values, and adjust autonomous behav-
iors by changing system modes. Most commands are event-
driven, meaning subsequent commands will not start until the
preceding command has fully completed. As the one-way
light time between Earth and Mars can vary from 3 to 22
minutes, the MSL team operates the spacecraft by sending
a set of activities that span an entire sol or several sols at
a given time [1]. When several simple FSW commands are
combined to elicit a more complex and higher-level activity,
this is called a sequence. A sequence is a file generated by
operators that can contain hundreds of FSW Commands.

While FSW Commands are the basic unit to measure a
specific action by the rover, a sequence is often a basic
measure by which a more complex activity is defined. A
typical sequence delivered might contain all the commands
to retransmit data products that weren’t properly received,
or all the images to be taken with the Navigation Camera
after a drive. Sequences are often designed to be re-usable
to save uplink bandwidth. In our two sequence examples,
a new retransmit sequence would need to be generated each
planning day as its contents must change from plan to plan.
The post-drive imaging sequence, however, can be crafted so
it can be left onboard the spacecraft and called by a higher-
level sequence in such a way as to remove the need for it to
be re-written each planning cycle. A typical planning session
for 1-3 sols on Mars will take 6-8 hours for the uplink team
to complete. On average, a given plan utilizes 98 sequences,
36 of which are unique to that plan. To date, more than
76,000 unique sequences have been executed onboard the
flight rover.

To tell sequences apart and make it simpler for the operations
team to manage them, each sequence is assigned a name
when it is created. Figure 1 displays the components of a
sequence identifier (sequence ID). Each sequence ID starts
with one of several four-character sequence categories that
give an indication of what the sequence is for or what team
is responsible for it. That sequence category is followed by a
numeric identifier that can range from 00000 to 16383. The
sequence category and the numerical identifier together are
referred to as a sequence ID. If a sequence needs to be up-
dated for some reason but its purpose is unchanged, the team
updates a separate sequence version but keeps the sequence
ID the same. To make it clear what version of the sequence is
being discussed, each sequence ID is accompanied by a flight
and ground version: the flight version is a number ranging
from 0000 to 4095 and the ground version is a letter from a
to z.

1

Figure 1. Examples of sequence ID and versions notation

MSL makes use of a sequence database (SeqDB) to pro-
vide version control for sequences and allow for seamless
contribution of sequences from several teams to one uplink
planning session. A sequence will be written locally by a
user and will not enter strict configuration control until it is
“delivered” to SeqDB. Once a specific version of a sequence
is delivered to SeqDB, it cannot have its contents changed and
re-delivered unless it is given a new and not previously used
sequence version. In instances where you need to change
the contents of a sequence and the sequence has never been
incorporated into the uplink process, the convention is to
increment the ground version and leave the flight version
unchanged. In instances where that criterion is not met,
such as when an update to a sequence is being made and
that sequence has already executed in flight, the convention
is to increment the flight version to one that has not been
previously used and reset the ground version to ’a’.

A sequence can change significantly before it is ready to be
used in flight or finalized enough to be delivered to SeqDB
and enter version control. This can happen when several
team members pass files back and forth, when an issue is
encountered in the testbed and someone finds a mistake or
makes improvements, or when a change is needed to account
for unique sequencing that is only valid in the testbed. As the
activity being planned becomes more complex, this can begin
to overwhelm even the most careful team as they collaborate
on sequence development and testing. For context, a typical
arm activity on the flight rover that included drilling a new
target over the course of 1 hour and 45 minutes included 76
unique sequences (some of which are called multiple times).
In total, over 7500 FSW commands were dispatched from
sequences during the drill attempt on sol 3512.

With all this sequence development and testing complexity,
our main problem begins to come into focus. There are
several ways that a mistake can be made in the sequencing
that are very difficult to catch. How can the team be sure
that once we are satisfied with how the activity was run in the
testbed that same confidence will translate to the sequences
we deliver for flight? The sequence iteration and testing
happen before a sequence is ready for delivery, so we cannot
rely on the configuration control of SeqDB. Delivering the
sequences to SeqDB before testing would not help either
as SeqDB would become flooded with poorly written and
untested sequences that may still have changes made in the
testbed that were not brought back into the already delivered
versions. Much of the review process that an activity is
subjected to is designed to help catch potential issues, but that
can be hard for a human to notice when tens of sequences are
changed countless times as the activity is prepared for testing.

This paper introduces a new tool developed for use by the

MSL Engineering Operations team that makes it easier to
confirm that the sequences intended for use in flight were
properly tested and had the desired effect. There is a concept
included in FSW already that provides the key link that makes
all these sequences much easier to review. FSW makes use
of something called a Sequence Checksum that can be used
by operators to further discern one sequence’s contents from
another. Much like a checksum used to verify the validity
of file contents, a Sequence Checksum can provide a concise
way to verify a given sequence’s commands are unchanged
between uses. Before detailing the design of the tool and
illustrating how it makes use of the Sequence Checksum,
we must first take a closer look the development and review
process for new sequences, the pre-existing version controls
in place for sequences, and how sequences are compiled and
sent to the spacecraft.

2. STRATEGIC ACTIVITY BACKGROUND
While the Curiosity rover can be commanded to complete a
wide range of science and engineering actions, these activities
can be broadly categorized into two types. The first type
of activity is known as a tactically planned activity. These
activities are typically lower complexity, carry less risk, and
the tools available to the operations team can be fully trusted
to check and simulate these actions. The operations team can
sequence and check these activities for correctness during a
typical 8-hour planning shift. The second type of activity is
more complex and will take much longer for the operations
team to test, plan, and review the design of the activity and the
sequences themselves. These are called ’strategic activities’
and will be the focus of this paper as it is this complexity that
can create sequence traceability issues.

The Different Paths to Approval

The definition of strategic activities used by MSL is applied
broadly and can include activities that may not be uplinked to
the flight rover. For example, while the sequencing related
to conducting a Flight Software update [6] or diagnosing
an issue and creating a new drilling method [2] certainly
come to mind as a strategically planned flight activity, the
term strategic activity also includes deploying an update to
a ground software tool, redesigning a ground process, or
conducting exploratory testing in a testbed to inform an
anomaly investigation. There are various paths that strategic
activities can take to approval, but the ones that involve de-
veloping sequences for use in flight require what is called an
ActID (short for activity identifier) to generate accompanying
documentation that is reviewed and approved before use.

MSL makes use of a custom web tool called MSLReports
which acts a repository for several planning products and
operational analyses. It also has an area for strategic activity
tracking. When a new activity documentation template is
created on MSLReports, it is assigned a numerical ID. This
is where the term ActID originates. The numerical ID is used
to differentiate between ActID’s. For example, ActID-1031
contains all the relevant documentation for the uplink and
installation of a new Flight Software release called R13 which
was conducted in 2023 [6]. For each ActID, an Activity Lead
is identified who will manage its development, testing, and
approval process as well as serve as the main point of contact
for others on the team who have questions.

2

Activity Development, Testing, and Review

Once the need for a strategic activity is identified, the typical
Engineering Operations team process for approval includes
the eight steps shown in Figure 2, some of which is done
in parallel and much of which can require iteration. First,
there needs to be a discussion amongst several members of
the team to decide on the basic structure of the activity and
what type of test venue will be required to prove the activities’
effectiveness. MSL has access to several testbeds that are
designed to accommodate different types of testing, and
choosing a venue which allows the team to test in a realistic
manner is an important decision. Second, the design of the
activity and the ActID documentation needs to be developed.
ActID documentation includes an activity overview, a listing
of spacecraft sequences and files, modeling and simulation
results, uplink product testing results, and pertinent informa-
tion for the teams planning and subsequently assessing the
activity. Third, the sequences themselves and a procedure for
testing them in a testbed need to be written and potentially
reviewed. Fourth, the testing is performed. Fifth, the test data
is analyzed by the Activity Lead and annotated to help prove
the activities’ effectiveness. Sixth, all the documentation
in the ActID is finalized in preparation for final reviews.
Seventh, the finalized ActID and the associated test data is
reviewed internally within the engineering team. Finally, any
necessary final approvals are obtained which can vary widely
depending on the nature of the activity. High complexity
activities often require additional approvals from the Project
Manager and Mission Manager at reviews that are larger than
the internal engineering review.

Figure 2. Simplified Diagram for the ActID Development,
Review, and Approval Process

As the final approvals are obtained, the Activity Lead’s focus
begins to shift toward making the activity happen in flight.
They will work with several members of the uplink team to
find a logical time for the activity to be included in a plan
given all the constraints and cross-team impacts that were
identified during the ActID review process. As the planning
day for the activity draws near, the sequences that will need
to be uplinked to the spacecraft are prepared for delivery to
a database called SeqDB that acts as the sequence version
control system.

3. SEQUENCE CONTROL AND DELIVERY
When the sequences are finalized and the activity devel-
opment team prepares for the internal review held by the
Engineering Operations team, all the sequence files are stored
in the sequence database (SeqDB). Operators who add se-
quences to SeqDB can do so in one of two ways. First,
they can “draft” the sequence. This adds the sequence to
the database but still allows for changes to be made without
modifying its version. Second, the sequence can be “deliv-
ered” which starts the configuration control of the sequence
and prevents any change to the sequence contents without a
change in sequence version.

SeqDB is also where the tactical team will retrieve sequences
when the final approvals have been obtained and it is time
to execute the activity in flight. To bridge the gap between
strategic planning and tactical planning, MSL has a suprat-
actical planning process that balances the needs of all the
various teams to come up with a high-level overview of what
the spacecraft will be doing in the coming two weeks [3].
Once the activity has been scheduled by the Supratactical
Lead and the planning day has arrived, it is the job of the
team staffing the planning shift that day to understand the
activity is scheduled to be included in that planning cycle,
pull in the relevant sequences from SeqDB, and ensure the
activity criteria and planning constraints outlined in the ActID
are upheld while the plan is being built. In cases where the
activity is particularly complex or carries unusual risk, the
Activity Lead will attend tactical planning to ensure proper
activity inclusion.

Since SeqDB does not allow changes to a delivered sequence,
this has always aided in sequence traceability. Once a se-
quence has been delivered, all the planning team needs to
do is include the correct version of the sequence in the plan.
Before final approvals are given at the end of the strategic
activity review process discussed above, it is required that
the Activity Lead have all sequences delivered to SeqDB
and documented in the ActID. What is missing from this
architecture is a guarantee that what is being delivered as part
of the review matches what was tested in the testbed. One
might be able to mitigate this by requiring sequences to be
delivered to SeqDB prior to uplinking them to the testbed for
testing, but there are several things that make that approach
impractical. First, requiring this would have a large impact on
the rate of iteration and progress in test sessions. Second, it
would flood SeqDB with sequences that have not been tested
and are certainly not safe for flight. While there are several
safeguards in place that prevent the team from delivering
an incorrect sequence, having a database full of invalid and
untested sequences is not good practice. Finally, there is no
easy or practical way to enforce this change given how we’ve
built our test support infrastructure. The sequence traceability
tool that is the topic of this paper will address this gap without
adding complexity to testbed operations.

4. SEQUENCE COMPILATION AND UPLINK
As all the plan’s details are finalized and the tactical planning
cycle concludes, the team must prepare the various sequences
and files for uplink to the rover. Typically, the files are
sent via one of the Deep Space Network stations directly
to the rover’s X-band High Gain Antenna in the Martian
morning. To understand the significance of the Sequence
Checksum and how it can improve sequence traceability, we
must first understand how a sequence comes to be used by the
spacecraft.

3

Figure 3. A simplified process diagram of sequence handling after an activity has been approved for use in flight

Sequence Content File and Robot Markup Language File

In its most basic form, sequence contents are stored in plain
text in a file format called a Sequence Content File (.seq
file extension). The Sequence Content File contains the
commands and arguments that makeup a sequence as well as
sequence comments (analogous to code comments). Multiple
sequence files are aggregated in the sequence editor by the op-
erator into an XML-based file type called the Robot Markup
Language (RML) File (.rml file extension). RML files still
contain all the commands, arguments, and comments of
the Sequence Content Files, but adds metadata that will be
used later to properly compile the sequence into its binary
format including dictionary version and sequence type flags
that are used by Flight Software for validation and storage.
When compiling sequences that will go to the spacecraft, the
Sequence Integration Engineer is responsible for aggregating
sequences from each team into an integrated RML file, which
will contain all the sequences that are to be transmitted to the
spacecraft for that particular plan.

Sequence Compilation

Command sequences are transmitted and executed in a com-
piled, binary format. A series of tools developed internally
at JPL take an RML file as input and produce a series of
binary Spacecraft Message Files (SCMFs) as well as several
other intermediate products. The set of SCMFs for all the
sequences and files going to the spacecraft for that planning
cycle is the key deliverable at the end of each planning
session. An SCMF contains the binary sequence data to be
transmitted to the spacecraft which includes header content
used by Flight Software for validation.

Transmission and FSW Validation and Use

The SCMFs that are ready to be uplinked are packaged into
appropriately formatted frames to be sent to the spacecraft [7]
and transmitted via one of the Deep Space Network (DSN)
stations at a predetermined time when the rover is expected
to be waiting for an X-band signal. The inclusion of the
SCMFs into these frames adds another layer of link overhead
in the form of a frame header. This frame header is used by
the rover’s Telecommunication Interface Card to determine if
the frame is valid, error-free, and intended for the receiving
spacecraft before proceeding. Once the Telecommunication
Interface Card validates the frame and hands the contents to
Flight Software, another validation occurs with the header
from the SCMF before the sequence contents are stored for
later use in the non-volatile file system. While there are
multiple points at which data is validated and checksums
are used to verify data integrity, it is at this point that an
entirely different kind of checksum is calculated and reported
by flight software. This additional checksum, called the
Sequence Checksum, is the last puzzle piece that will allow
us to implement the sequence traceability tool.

5. THE SEQUENCE CHECKSUM
The Sequence Checksum is an MD5 checksum [9] computed
over the binary copy of a sequence (every compiled command
and argument, but not the initial header) and is distict from
the checksum used by FSW to validate the entire sequence
file with the header. MD5 is a 16-byte checksum, but MSL
only uses the 4 high-order bytes.

This section describes the original motivation for adding
Sequence Checksums to MSL flight software, and some of
the design decisions that led to the current implementation.

Genesis

The Sequence Checksum was added to MSL Flight Software
(FSW) to address a problem that occurred during Spirit Mars
Exploration Rover (MER) flight operations. On sol 1237,
MER Rover Planners (RPs) successfully created and uplinked
three arm control sequences, but they inadvertently neglected
to flag the names of those sequences as having been used in
their online database. As a result, on sol 1238 a new set of
RPs attempted to uplink arm control sequences that reused
the same names as the prior sol’s sequences. At the time MER
RP sequence delivery tools were configured to minimize
uplink volume by rejecting new deliveries if the sequence
was already onboard. As a result, on sol 1238 the new
sequences were not delivered and the prior sol’s sequences
ran again. Fortunately, rerunning the prior sequences did not
result in any physical damage; a minor error in the execution
of the 1237 sequences had left the arm in an error state
that precluded additional motion, so no actual arm motion
occurred on sol 1238.

However, there was an impact on the downlink analysis. To
save downlink bandwidth, when executing commands the
MER FSW only reports the name of the command and its line
number within a sequence. The MER downlink teams had
automated the annotation of FSW Event Report text messages
(EVRs) by retrieving RML files from the same-sol’s delivery
areas in the filesystem and merging command details from
that original RML file into the list of messages [10]. During
the sol 1238 downlink that process led to some very confusing
annotations, as the same-named sequences onboard (from
sol 1237) had run completely different commands than those
stored in the sol 1238 filesystem RMLs. So, the annotations
were completely incorrect.

That event led to the idea that FSW should also describe
sequences by their contents, not only their names, to be
sure we understand exactly what is running onboard. So
MSL Sequencing FSW was updated to include Sequence
Checksums everywhere: in EVR text messages, data prod-
ucts, and channelized telemetry. That makes it possible to
automatically validate the sequence contents even from a
small amount of downlinked telemetry; there is no longer any

4

String Length All MD5 hashes Only Colliding MD5 hashes

1

2

3

4

5

Figure 4. MD5 Randomness images. These visualize the distribution of actual 4-byte MD5 hash prefixes in the space of 232
possible values. Each row R in the figure corresponds to the hashes of all possible strings of length R using uppercase alpha,
numeric, and underscore characters (a subset of the characters allowed in command stems and arguments). The left image in

each row shows every hash value computed from R-character strings; the right image shows all collisions (hashes which
represent more than one string). Images are 210x210 pixels, and each pixel represents 212 adjacent hash values; the more hash

values that were generated in that pixel’s range, the darker the pixel. Each image is normalized to render the greatest sum
within it using the darkest pixel value. As expected, the distribution of hash values is nicely spread throughout each image,

suggesting that in practice the number of Sequence Checksum collisions will be small.

5

need to guess which version of a sequence was run.

Development

Using Sequence Checksums to document uplinked sequences
is far more robust than relying on human-maintained version
numbers. The FSW-reported checksum is derived from the
commands and arguments within a sequence, not extraneous
header information that doesn’t change commanded behavior.
Only meaningful sequence changes that impact what the
spacecraft does will be reflected in the checksum reported by
the FSW.

MD5 was chosen over simpler XOR-style checksums due
to its preferred hashing characteristics: small changes in an
input result in large changes to the resulting hash value. This
has made it popular as a method for uniquely ”fingerprinting”
files by their contents, e.g., in GitHub at the time it was added
(October 2008). However, we were unable to accommodate
the full 128-bit hash simply into our telemetry, and instead
chose to use just the 32-bit prefix of MD5 hashes generated
by the algorithm [9]. As a sanity check, we tested the MD5
prefix hashes of short length alphanumeric strings to see how
well they were distributed through the space of 232 possible
values. We chose to visualize the results in images, several of
which are shown in Figure 4. They suggested that even the
32-bit prefix of the MD5 Checksum would be well-distributed
with few collisions. And since we never plan to run different
versions of the same-named sequence on any given sol, using
a combination of (sequence name, Sequence Checksum) to
identify sequences can only result in at most a few thousand
combinations, virtually ensuring there will be no collisions
(different sequences encoding to the same hash value) over
the lifetime of the mission.

FSW had previously only reported sequence names and flight
version numbers for sequences, but we added the Sequence
Checksum information to many parts of the downlink teleme-
try: text-based Event Report messages (EVRs), new chan-
nelized telemetry channels, and data product binary files that
describe the onboard sequence contents. This addition to the
MSL FSW also persisted when the Mars 2020 rover FSW
and ground tools were being built. While initial ground
tool use of Sequence Checksums on MSL was limited to
downlink annotation tools, SENDIT now makes use of the
Sequence Checksum in the uplink planning and strategic
review process.

6. THE TOOL: SENDIT
Even though a formalized review process and a sequence
database aid in sequence traceability, they are unable to pro-
vide much coverage while the sequences are being developed
and tested iteratively. When the desire to further increase
sequence traceability prior to sequence delivery was first
considered, the Sequence Checksum quickly became seen
as the missing link that would be most helpful in the tool’s
development. Sequence Checksums are reported each time
a new sequence is received or run in the spacecraft’s event
telemetry, making it easy to distinguish between similarly
named and versioned sequences that have different contents.
We permanently record this telemetry not just for the flight
vehicle, but also for all the testbeds. Each time a testbed
is used by a tester, a unique session ID is created that can
be used to query testbed data only from that specific test
effort. Each ActID comes clearly marked with any relevant
sequences and the session IDs of any testbed sessions used to
validate the activity, meaning a tool could be built to quickly

analyze all the testbed data and compare it to the contents of
sequences delivered to SeqDB.

The tool, named Sequence Equivalence Navigator Designed
to Increase Traceability (or SENDIT), now had a basic de-
sign. The tool would take as inputs the ActID number the
user is interested in as well as any testbed session IDs to
be used to analyze testbed data. It would then read the
ActID contents to find any sequences that are part of the
activity, query testbed data to look for sequences that were
run during testing, and query SeqDB to obtain information
about sequences found in the ActID and testbed data. Once
all that data is analyzed, a table could be produced that would
quickly alert the user to potential issues with the sequences
or the testing methodology, vastly simplifying the review
process and making it easier to focus on relevant material in
the strategic activity review.

Tool Output

Figure 5, shows an HTML report example of the tool’s output.
In addition to this HTML report, a similarly formatted report
is printed to the terminal that contains the same information.
The HTML format can be useful for uploading the report to
the ActIDs as an attachment. Each row in the table represents
a sequence. The first column shows the sequence ID and full
version (flight version and ground version) that the tool found
while parsing the contents of the ActID. The second column
shows the sequence ID and version of a matching sequence
that was seen executing in testbed telemetry. Note that this
column does not include the ground version. When sequence
execution is reported in telemetry, sequence ID, checksum,
and flight version are noted in event telemetry but not the
ground version. The spacecraft has no knowledge of the
ground version of a sequence, so no presumption is made
that the ground version the operator sent matches what is
shown in the ActID. The third column shows the Sequence
Checksum taken directly from testbed telemetry. The fourth
column notes the sequence ID and version of a sequence
found in SeqDB that matches the sequence ID, flight version,
and checksum. The fifth column shows the checksum of the
sequence it was matched with from SeqDB. Note that this
value must be computed by the tool, as Sequence Checksum
is not stored in the database since what version of Flight
Software it was compiled for could change the checksum.
The rest of the columns are pieces of metadata stored in
SeqDB that can clarify the state of a given sequence. This
includes the state of the sequence in SeqDB (options are
drafted, delivered, accepted, descoped, and rejected), the
most recent sol to which the sequence was delivered, the
onboard state of the sequence (referring to whether it is
currently known to be on the flight rover and which computer
it is on), and whether it is the highest version in SeqDB. This
last piece of metadata can be particularly helpful because the
convention is to only increase the flight and ground versions
as new versions of a sequence are delivered for use in flight.
If a sequence version were not the highest of its particular
sequence ID, that could be the result of someone mistakenly
using an outdated sequence.

In addition to the main contents of the report, messages
routinely appear above the table to alert operators and review-
ers to important information that is helpful for interpreting
the report. For the ActID shown in Figure 5, only one
such message was included. For this report, it cautions that
an un-versioned sequence was referenced in the ActID. In
many cases, someone may mention a sequence in the activity
description for context and not because it is going to be
part of the activity. This is only cause for concern if the

6

Figure 5. SENDIT HTML report for ActID-1119 which updated the spacecraft’s fault protection communication windows

Activity Lead omitted version information necessary for the
ActID. Additional caution messages can be displayed to alert
operators to sequences that could not be properly compiled
to have their checksum computed, SeqDB queries that were
unable to provide the relevant RML file, and instances where
there are multiple ground versions that have a matching
Sequence Checksum.

For the ActID shown in Figure 5, the objective was to update
the timing and duration of the spacecraft’s fault protection
communication windows [8]. This ActID is fairly straight-
forward and did not require many sequences or complicated
testing. As a result, the report shows that none of the
sequences have tripped a warning. Figure 6 shows a more
exciting report for ActID-1073. This ActID replaced several
onboard reusable drilling sequences that needed to be updated
to be compatible with a new FSW version that was installed
in April 2023 [6].

A quick review of this report shows that several table cells
have been highlighted in orange. This is a visual indicator
that there might be an issue with a particular sequence. In this
case, the sequence in the leftmost column is highlighted as
well as at least one other cell in that row to show the operator
why the sequence was flagged. A sequence in this report can
be flagged for one of 8 reasons.

1. Sequences that appear in the ActID but are not found in
testbed data will be highlighted and “NOT TESTED” will be
shown in the “Testbed Sequence” column. This is an issue
because the reviewer might otherwise have the impression
that all ActID sequences were tested but it could be hard to
confirm. Conditional sequencing or other factors could create
a scenario where everyone presumed a sequence was tested
when it was not.

2. Not all the sequences necessary for testing need to be
referenced in the ActID. For example, an engineering se-
quence that is run daily may have run in the testbed to make
testing more realistic but is not part of the activity. If that
is the case, any sequence used in testing should already be
onboard the spacecraft. So, sequences not in the ActID and
not already onboard will be highlighted and the text “NOT IN
ACTID/ONBOARD” will appear in the “ActID Sequence”
column.

3. For each sequence included in the ActID, SENDIT will
look through SeqDB for a Sequence Checksum match to the
tested version. If the tool was unable to find a sequence whose

checksum matched what was tested, it will be highlighted and
“NO CHECKSUM MATCH” will be included in the “SeqDB
Sequence” column.

4. If a sequence is not included in the ActID but was invoked
during testing, SENDIT will also look to find a Sequence
Checksum match. If the tool is unable to find a checksum
match in this scenario, “CHECKSUM NOT FOUND” will
be included in the “SeqDB Sequence” column.

5. SENDIT assumes that it will only need to check sequences
that match a flight version to find a checksum match. For
example, if the ActID and testbed telemetry both reference
flight version 1 of sequence ID eng 00100, only flight version
1 sequences will be evaluated for a match (eng 00100.0001a,
eng 00100.0001b, etc.). In the event the SeqDB query re-
turns no sequences with that flight version, the sequence is
highlighted and “VERSION NOT IN SEQDB” is shown in
the “SeqDB Sequence” column.

6. If the value of the “Highest Non-Testbed Version” column
is False, the sequence is highlighted. A sequence that is
not the highest version could indicate someone mistakenly
tested or delivered an outdated sequence. For example,
eng 00101.0000a may be referenced in documentation, but
if eng 00101.0001f exists in SeqDB already it is possible
that the wrong sequence version is being referenced. The
term non-testbed creates an exception for sequences that
are delivered to a special sol in SeqDB called “testbed”.
This accounts for nuanced internal rules for how SeqDB is
typically used and is outside the scope of this discussion.

7. Any sequence that has a SeqDB state of “Rejected” is
highlighted. Rejected sequences have been placed into that
state by a Sequence Integration Engineer on a tactical shift
and indicates that the sequence is not good for uplink and
should never be used.

8. Any sequence that has a SeqDB state of “Descoped” is
highlighted. Descoped sequences have been placed in that
state by a Sequence Integration Engineer on a tactical shift
and indicates that the sequence is not good for uplink for
the current planning session but could be used in the future.
However, the team’s sequence versioning conventions make
it unusual that it would be used again in the future.

Three Key Insights from the Increased Traceability

The ability to generate this level of detailed reporting in a
matter of seconds increases sequence traceability and makes

7

Figure 6. A more complicated SENDIT HTML report for ActID-1073 which updated reusable drill sequences for a new
version of Flight Software

8

it easy to find three key issues. Each of these issues can be
connected to one or more of the reasons a sequence would be
highlighted discussed in the previous section.

1. The report identifies any sequences whose tested check-
sums do not match what is delivered for use in flight. This
could mean that an incorrect sequence was delivered or that
the version that was tested did not properly include sequence
changes made toward the end of development.

2. The report identifies sequences that were used in testing
but are not part of the ActID. This could indicate that there
are sequences not documented as part of the ActID that are
required for the activity to complete successfully. While
there are tactical tools in place to ensure that every sequence
called is bundled, not having it as part of the documentation
that is approved would likely prevent the activity from being
included in a plan if it is not caught before planning begins.
The activity would have to go back through reviews and re-
scheduled for tactical.

3. The report identifies sequences that are in the ActID but
were never invoked in testing. This means there is a gap in
testing and the activity has not been fully validated. While
this may seem unlikely, the conditional sequencing capability
available on MSL (running certain commands only when an
“if statement” condition is met for example) means it is easy
to miss that a conditional branch was never tested.

These insights have already proved to be very helpful at
several points in the activity development and review process.
For example, a tester can run it after completing their testing
but before preparing documentation for a review to ensure
that all the sequences were properly tested and included in
the ActID. To highlight another use case, a reviewer can run
the report prior to arriving at the internal review to help them
formulate questions and get a sense of anything unusual about
the sequences that were tested.

Dispositioning Warnings and Common Rationale

Since each of the highlighted sequences represents a potential
issue or mistake, it has become routine to produce a write-
up to accompany the tool output that dispositions each of
the caution messages and highlighted sequences. This can
be helpful because there are scenarios that SENDIT would
highlight and warn the operator about a given sequence that
might be acceptable. Common occurrences that have been
seen to date while using the tool include:

• If a mistake is discovered during testing, the report will typ-
ically show multiple lines for a single sequence with different
checksums. This is due to the operator making sequence
content changes and re-running the sequence. In this case,
one line will show “NO CHECKSUM MISMATCH” and one
will show as a match. The reviewers need to make sure that
the updated version of the sequence was the one delivered to
the sequence database, which is typically addressed during
the test data review portion of the internal review. For an
example of this scenario, see the sequence dril 15703 in
Figure 6.

• If an Activity Lead references an old sequence version in
the ActID documentation, it will be included for analysis
since the tool has not been given the ability to account for the
context surrounding the sequence ID in the ActID. In most
cases, this will result in the older version of the sequence
being shown on the report as “NOT TESTED” despite its
irrelevance to the ActID. Refer to the sequence sss 15072 for
an example of this scenario in Figure 6.

• The MSL project has several different testbeds that each
have their advantages and disadvantages when it comes to
their effectiveness as a test venue. No testbed is a perfect
replica of the flight vehicle on Mars so there are some
sequences which must have different contents in the testbed.
For example, the sequence pwr 00801 in Figure 6 shows
that testing used a rejected version of the sequence that is
not currently onboard. This sequence changes the value
of power parameters after drilling occurs, but because of
the differences of the configuration between the rover on
Mars and the testbed on Earth that is not powered with a
Radioisotope Thermoelectric Generator, the parameters need
to be set to different values than what they are in flight.

• In some cases, it is impractical or dangerous to attempt
to force a specific conditional sequencing path to be run in
the testbed. In limited cases, the team may decide to allow
sequences to go untested provided that they are limited in
complexity, able to be inspected, and have previous testbed
or flight data that validates the commanding approach. An
example of this case can be seen in Figure 6 for the sequence
dril15215 .0001a. In this case, the sequence is responsible for
decrementing the percussion level used in drilling [2] in the
event the speed with which drilling depth is achieved through
a sample is above a certain threshold. It would be difficult for
operators to repeatably provide a rock sample that allowed
this sequence conditional to be met, so it was highlighted by
the tool and reviewed by inspection in front of the internal
reviewers.

• Sometimes, sequences used specifically for testbed setup
are highlighted as “NOT IN ACTID/ONBOARD” to caution
operators that the sequence may have been inadvertently left
off the ActID. The sequence arm 15046 in Figure 6 is an
example of a setup sequence that was run in the testbed but is
not required to be used in flight.

• One of the caution messages that can appear at the top
mentions when multiple ground version checksum matches
are found for a specific sequence. Out of an abundance
of caution, the tool will currently show all ground versions
with a checksum match, meaning those sequences will have
multiple rows in the table. While this doesn’t have a practi-
cal impact since the Sequence Checksum being unchanged
between versions means the commanded behavior is not
different, it could alleviate confusion as to which ground
version is intended for uplink. See arm 15046 in Figure 6
for an example of this scenario.

With relatively few exceptions, the report output should be
clean and show few potential issues. Pairing the SENDIT
output with disposition discussions allow operators and re-
viewers to know where to focus their efforts as they prepare
the activity for flight and will ultimately lead to higher-quality
discussions during the review and approval process.

Analysis Algorithm and Output Generation

Having presented the finer detail of the tool’s output, we now
describe how SENDIT was architected and how it completes
the required analysis. SENDIT makes extensive use of the ex-
isting mission system environment where many other similar
tools and scripts run on Red Hat Linux machines. The tool is
written in Python3 and makes use of modules from the Python
Standard Library to interface with the operating system, parse
and store data, handle HTML requests, and invoke other MSL
python and shell scripts. The tool also relies on MSL-specific
infrastructure to query testbed telemetry, query SeqDB, and
access the ActID content.

9

Invoking SENDIT is done from the command line and re-
quires that the operator provide the testbed machine host
name, the testbed database host, the testbed database port,
and the test session ID. If the operator wishes to have the tools
analyze the testbed and sequence data against an ActID, they
must also provide the numeral portion of the activity identifier
for the ActID.

Once SENDIT validates input, it starts collecting and or-
ganizing data from the various sources. First, it sends an
HTML request to the MSLReports server to obtain the text
from the specified ActID and parses that content to pull out
any text strings that are in the format of a sequence ID.
Second, it queries testbed data for specific event records that
are generated each time a new command is dispatched for
execution by FSW. This event record includes the sequence
ID, flight version number, and the Sequence Checksum.
These three pieces of information are used to build a list of
unique sequences that were run in the testbed session. From
here, sequences that are known to be testbed setup sequences
or are meant to mimic tactically generated sequences that are
not a part of the activity are removed from consideration. By
comparing the list of sequences referenced by the ActID and
the sequences found in testbed data, the sequences are split
into three categories. Sequences that have been tested and
appear in the ActID, sequences that were testbed but do not
appear in the ActID, and sequences that were not tested but
appear in the ActID. Having these split into three categories
at this point will make later analysis more straightforward.

With lists of all the sequences we want information about, we
can now start querying SeqDB for relevant detail. Queries
are run for each unique sequence ID and flight version
combination. In addition to a variety of metadata, SeqDB
also provides the location on the mission’s ground filesystem
where an RML file containing that sequence can be found.
Since Sequence Checksums cannot be stored statically in
SeqDB (it can but doesn’t always change depending on the
FSW version against which it is compiled), we must compile
the sequences as if we will be sending them to a spacecraft
or testbed in order to calculate the checksum. All sequence
files are aggregated into a temporary directory where they are
compiled into SCMFs. We can then take the relevant portion
of the binary SCMF file and compute the MD5 checksum
and record the 4 most significant bytes as the Sequence
Checksum.

With a complete list of potentially relevant checksums from
SeqDB, a complete listing of sequences and checksums from
the testbed, and context from the ActID, we can now com-
plete the analysis to provide increased sequence traceability.
For each sequence that was tested (two of the three categories
we made earlier), SENDIT attempts to find a checksum
match. Based on what is found and whether the sequence
was found in the ActID, the rest of the table is populated with
a warning or metadata from matched sequences. If there is a
match at this point, an additional SeqDB comparison is made
to determine if the sequence is the highest version currently
delivered to a non-testbed sol. Once all the tested sequences
have been analyzed, sequences from the non-tested category
are added to the table.

With the table completed, the appearance of the cells that
meet warning criteria are adjusted to highlight any concerning
issues. Next, the main report content is printed to the terminal
and saved into an HTML file for later reference. Temporary
directories containing the sequences and the compiled prod-
ucts are cleared and execution completes.

Additional Example and Report Discussion

Figure 7 shows another example report. In ActID-1108, a
sequence used to recover from drill attempts that experience
a fault while the bit is still inside the rock was updated to
be compatible with a new version of Flight Software [5].
This sequence is typically kept onboard for easy usage, so
it was being stored onboard in the rover’s sequence library
instead of being invoked solely in the planning cycle that it
was uplinked.

Many of the warnings and dispositions in this example are of
a similar nature to those seen in ActID-1073. There are two
dispositions of note here that help illustrate the usefulness of
this tool. First, dril15130 is highlighted because no matching
checksum was found in SeqDB. Since this activity was meant
to test bit retraction after an anomalous drill attempt, the
team had to figure out how they could reliably introduce a
fault and stop the drill sequencing. The method they settled
on was to modify an existing drill sequence (dril15130) and
place a command that would mimic a fault and preclude
future drilling. This would cause the rest of the drill at-
tempt to instantly halt, placing the testbed in a representative
anomalous condition where the retraction sequences could
be tested. Since this sequence was modified by the testers
the day of testing and they did not deliver it to SeqDB, it
makes sense this would be the result. Second is a warning
that was also present in ActID-1073 but was not discussed
yet. The sequences dril15703 and dril15711 both show as
having no matching checksum in SeqDB. Both sequences
alter parameters related to the Force Torque Sensors present
on the robotic arm. While the sensors in use in the flight
rover and the testbed are the same, the one installed on testbed
happens to have a lower measurement quality. This requires
slightly different parameter settings to be used in the testbed.
In this report, these minor but expected differences result in
an inability to find a checksum match.

This additional example is also helpful to show how useful the
tool can be for making a small number of sequence changes
to complicated spacecraft actions. This report is lengthy not
because the ActID will involve a large number of sequences
but because the underlying action of setting up the testbed
and drilling in a flight-like way is complicated. Upon closer
inspection, one can see that there is only one new sequence
that is delivered as part of ActID-1108 (dril15080). Even
though many of the sequences on the report have nothing to
do with this ActID, understanding that the correct versions of
those sequences were run helps the team evaluate the validity
of the test.

Alternate Modes

Up to this point, our focus has been on the tool’s most typical
usage mode. While SENDIT is most useful when pairing the
testbed data and SeqDB information with an ActID, the tool
can also be run in an alternate mode that does not require an
ActID. Previously, we discussed the three key insights pro-
vided by the increased sequence traceability of this tool. Two
of them dealt with alerting the operator about inconsistencies
between testbed data and the ActID. There is one insight
that can still be gained even if ActID documentation for the
related sequences does not exist. Without a documented
ActID, we can still determine whether the sequences that have
been tested in a given test session match what is delivered for
use in flight or onboard the spacecraft.

Figure 8 shows the report generated in this alternative mode
for the same ActID that was analyzed in Figure 7. In this

10

Figure 7. SENDIT HTML report for ActID-1108 which updated off-nominal drill recovery sequences for a new version of
Flight Software

mode, SENDIT focuses on all the sequences run in the test
sessions and tries to find the corresponding sequences in
SeqDB. While information provided in the ActID is not a part
of this analysis, many of the potential issues highlighted in
Figure 7 can also be seen in Figure 8.

7. CONCLUSION
When the operations concept and Mission System for Curios-
ity were designed, careful consideration was given to protect
against unwanted sequence changes or inadvertent sequence
uplink by implementing sequence controls and checks. While
this original design is still effective, extending this sequence

control and traceability by allowing a way to check sequences
against testbed data as they enter the original controls makes
it easier for operators to test and deliver complex activities.
While it is impossible to tell whether a given mistake could
survive the myriad checks that exist between review and up-
link, the tool has allowed the team to find issues much earlier
in the development process while significantly reducing the
time investment required to check for such mistakes. Perhaps
most significantly, an increase in the complexity of an activity
no longer means that this process is more difficult or time
consuming because of this tool.

While this tool has already proved its usefulness to the MSL
team, there are several areas where future work is possible to

11

Figure 8. SENDIT HTML report for ActID-1108 which was generated without providing the ActID as input

further improve and extend the tool’s capabilities. Currently,
the tool uses simple rules and references configuration files to
look for sequences that should be omitted from the analysis
and how to deal with multiple checksum matches. The tool
takes a conservative approach to avoid removing a relevant
sequence and avoid under-reporting checksum matches, but
the sophistication of determining what sequences are relevant
to the testing or ActID could be increased. This would reduce
clutter and false warnings on the report. Another potential
area for improvement is the logic used to parse the ActID
contents to pull out relevant activity sequences. Relying on
a regular expression match to find text strings that likely
refer to a sequence frequently results in the tool trying to
analyze a sequence that doesn’t exist or was just mentioned
in the ActID description for context. Improvements could
also be made in the tool’s knowledge of known sequences or
checksums that are meant for the testbeds only and are not
safe for flight. While this situation hasn’t caused an issue
for MSL to date, it would be an easy one to protect against
by keeping a list of known sequences that were altered to
accommodate testbed hardware. Use of these sequences in

testing would also prompt the review team to ask about the
relevant parts of the activity and give extra scrutiny to the
test data to ensure the differences with the flight vehicle were
properly considered.

The final area for potential future work is the adaptation or
creation of a more standardized tool that can be used else-
where at JPL or other institutions that asynchronously operate
robots in space and non-space environments. By showing
examples from commanding the Curiosity rover, this paper
establishes that complete traceability for commanding of any
remotely operated robotic system can vastly simplify com-
plex operations and significantly reduce the risk for command
error. SENDIT it illustrates one of many ways to accomplish
this by using the Sequence Checksum, however, the idea
of the Sequence Checksum has only been implemented to
date in the rover Flight Software of MSL and Mars 2020.
Other missions could decide to address the same problem by
implmenting thier own version of the Sequence Checksum
and SENDIT, by designing a sequence database to begin
configuration control earlier in the development process, or

12

more heavily invest in simulation to include low-level system
behavior and surface interaction in a way that makes it clearer
when unintended sequence changes are introducted. No
matter what form the solution takes, it should make it easy
to verify that when testing results in the desired outcome, all
the sequencing that produces that outcome matches what is in
the queue to be uplinked to the spacecraft.

ACKNOWLEDGMENTS
This work was carried out at the Jet Propulsion Labora-
tory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration
(80NM0018D0004).

The authors would like to thank the Mars Science Laboratory
for supporting this work.

REFERENCES
[1] A. H. Mishkin, D. Limonadi, S. L. Laubach and D. S.

Bass, “Working the Martian night shift - the MER surface
operations process,” in IEEE Robotics & Automation
Magazine, vol. 13, no. 2, pp. 46-53, June 2006, doi:
10.1109/MRA.2006.1638015

[2] R. Kinnett, T. Green, D. Klein, M. Richardson Lin,
“Remote Diagnosis and Operational Response to an In-
Flight Failure of the Drill Feed Mechanism Onboard the
Mars Science Laboratory Rover,” Proceedings of the 46th
Aerospace Mechanisms Symposium, Virtual, May 11-13,
2022

[3] M. Gildner et al., “Commanding Curiosity from the
Couch: MSL Remote Operations, Challenges, and Path
Ahead,” 2021 IEEE Aerospace Conference

[4] M. Muszynski, E. Ferguson and S. Wissler, “The Evolu-
tion of Command and Sequencing at JPL: Origins and
Flight Software Core Lineage,” 2023 IEEE Aerospace
Conference

[5] A. Holloway, J. Denison, N. Patel, M. Maimone and A.
Rankin, “Six Years and 184 Tickets: The Vast Scope of
the Mars Science Laboratory’s Ultimate Flight Software
Release,” 2023 IEEE Aerospace Conference

[6] R. Larsen, et al., “Look Before You Leap: Installing
R13 on the Curiosity Mars Rover,” 2024 IEEE Aerospace
Conference

[7] Mars Science Laboratory Project, “Uplink and Com-
mand Functional Design Description Design Document
(FDD)”, Revision B, JPL Internal, 2009.

[8] K. Rink, R. Boehmer, K. Kaplan, R. Larsen, J. Clark
and T. Neilson, “Martian Mayday: The Evolution of
Curiosity’s Safe Mode Communication Over Ten Years,”
2024 IEEE Aerospace Conference

[9] R. Rivest, “RFC 1321 - The
MD5 Message-Digest Algorithm” ,
http://www.faqs.org/rfcs/rfc1321.html,
April, 1992.

[10] Jeffrey Biesiadecki, Robert Liebersbach, Mark Mai-
mone, ”Mars Exploration Rover Mobility and IDD
Downlink Analysis Tools,” International Symposium on
Artificial Intelligence, Robotics, and Automation for
Space (i-SAIRAS) Proceedings, Los Angeles, CA, 27
February 2008.

BIOGRAPHY[

Jonathan Denison is the creator of
SENDIT and has been a member of the
MSL Operations team at the Jet Propul-
sion Laboratory since 2018. He has
contributed as a Systems Engineer to
the Data Management, Systems, Flight
Software, and Ground Software (Team-
tools) teams on MSL and as of 2022 is
the MSL Engineering Operations Team
Chief. Prior to joining JPL in 2016,

Jonathan worked on aviation operations software and naval
radar systems. Jonathan earned his B.S. in Aeronautical and
Astronautical Engineering and M.B.A. from The Ohio State
University as well as a M.S. in Computer Science from the
University of Southern California.

Mark Maimone is a JPL Principal
in Autonomous Planetary Rover Navi-
gation, Mars 2020 Robotic Operations
Deputy Team Chief, member of the
Rover Planner and FSW development
teams, and a Robotic Systems Engineer
in the Robotic Mobility group at the
Jet Propulsion Laboratory. Mark re-
ceived NASA Exceptional Achievement
Medals for designing and implementing

GESTALT self-driving Flight Software for MER and MSL;
contributed to the Mars 2020 self-driving Flight Software;
during MSL operations served as Deputy Lead Rover Plan-
ner, Lead Mobility Rover Planner and Flight Software Lead,
and contributed to the Sequencing and Parameter flight soft-
ware modules; and developed downlink automation tools for
MER and MSL. Mark is also a member of NASA’s Lunar
Terrain Vehicle Insight team. Mark holds a Ph.D. in Com-
puter Science from Carnegie Mellon University, and has also
developed navigation and image processing capabilities for
robots in Chornobyl and the Atacama Desert.

13

