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Abstract

Many aspects of the real world continue to plague
stereo matching systems. One of these is perspective
Joreshortening, an effect that occurs when a surface
s viewed at a sharp angle. Because each stereo cam-
era has a slightly different view, the image of the sur-
face is more compressed and occupies a smaller area in
one view. These effects cause problems because most
stereo methods compare similarly-sized regions (using
the same-sized windows in both images), tacitly as-
suming that objects occupy the same extents in both
images. Clearly this condition is violated by perspec-
tive foreshortening.

We show how to overcome this problem using a Lo-
cal Spatial Frequency representation. A simple geo-
metric analysis leads to an elegant solution in the fre-
quency domain which, when applied to a Gabor filter-
based stereo system, increases the system’s mazimum
matchable surface angle from 30 degrees to over 75
degrees.

1 Introduction

Object surfaces are rarely viewed head-on in both
images of a stereo pair. Instead, they may appear
more compressed in one image due to perspective fore-
shortening, as in Figure 1. When a surface has a tex-
tured appearance, this effect makes matching the two
images very difficult, since its appearance differs so
much between the two images. This leads to poor re-
sults from area-based stereo matching techniques.

In this paper we develop a model of perspective
foreshortening that enables us to quantitatively pre-
dict its effect on stereo image pairs. We present two
equivalent forms of a correction factor that allow us to
reason about foreshortening effects in both 3D world
coordinates and 2D image coordinates. We show how
to improve the accuracy of phase-based stereo match-
ing systems using this information, and demonstrate
its application to a particular Gabor filter-based stereo
system. Applying the correction factor to this system
increased its maximum matchable surface angle from
30 degrees to over 75 degrees.

2 Related Work

Several phase-based stereo methods have been de-
scribed in the literature [3] [12], and a review of the
more popular variations can be found in [4]. Although
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Figure 1: Stereo pair illustrating the effects of fore-
shortening; image compression, differing extents.

some of these mention foreshortening as an issue, none
has explicitly modeled or corrected for it.

There have been a few attempts at modeling fore-
shortening in the context of stereo matching. Jones
and Malik [5] attempted to apply local spatial fre-
quency to the problem, but assumed orthographic pro-
jection and affine warping. Belhumeur [2] addressed
the problem in the spatial domain, but his method re-
quires an estimate of the disparity derivative, an inher-
ently noisy estimator. Panton [10] also dealt with fore-
shortening in the spatial domain but assumed that the
average global depth was fixed and the surface slant
was bounded. The variable window method of Kanade
and Okutomi [6] implicitly addresses foreshortening in
the spatial domain by allowing corresponding windows
to have different sizes, but is intended to function as a
high-precision refinement technique: without proper
guidance from other sources it tends to get stuck in
local minima and flatten out sloped surfaces.

Local spatial frequency has already been identi-
fied as a valuable tool for modeling surface shape
and segmenting multiple textures in a single image
[7] [9]. These approaches use filter magnitude in the
frequency domain as the feature of interest, and re-
quire either that the surface textures exhibit specific
properties (e.g., periodicity), or that they be viewed
directly head-on.

Local spatial frequency representations have also
been successfully appled to optical flow problems [1]
[13], using phase information as well as magnitude.



3 Background

Stereo vision requires that a pair of cameras be po-
sitioned with overlapping fields of view. To simplify
the forthcoming discussion we will restrict our atten-
tion to a simple case: both cameras on a horizon-
tal plane with optical and vertical axes parallel, and
known baseline.

The primary task in stereo matching is to locate
pairs of pixels that are images of the same point in
space. Once a correspondence has been established, it
is a simple matter to determine the distance to that
point using triangulation.
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Equation 1 describes pointwise disparity only (us-
ing the notation of Figure 3); we will show how to
extend this description to surfaces in Section 4.

3.1 The Scalogram: A Unified View of
Scale Space

There are many local frequency representations:
spectrograms (Short Time Fourier Transforms),
Wigner-Ville distributions, wavelets, and scalograms
to name a few. [11] All are similar in effect, but slightly
different in structure. The spectrogram uses a fixed
window size at all scales and a logarithmic sampling
of wavelengths. In contrast, the scalogram uses a
variable window size, one which is a constant num-
ber of wavelengths long. This makes high frequen-
cies much more localizable, and provides the neces-
sary support for low frequencies. The scalogram is
actually an instance of general wavelet functions: the
scalogram comprises filter outputs from a bank of Ga-
bor wavelets.

Figure 2 illustrates a simple signal and its scalo-
gram, computed as follows:

Scalogramp(z,y) = (R * Gabory)(z)

where R is the one dimensional input row, A is the fil-
ter wavelength, m is the number of wavelengths to fit
in the window, ¢ is the Gaussian parameter expressed
as a fraction of the window size mA, and * denotes con-
volution. The signal consists of a sine wave with high
frequency on the outside and one with lower frequency
inside. The scalogram plots have a straightforward in-
terpretation: the horizontal axis is the same as in the
original signal (Pixel number) and the vertical axis
is wavelength (in pixels). The height of the plot en-
codes the strength of the signal at a given location and
resolution (wavelength); higher peaks mean stronger
response. Phase values are most reliable on or near
the magnitude peaks. The scalogram has a triangu-
lar shape because no data is plotted where the filter
window would extend beyond the signal boundary.
This kind of representation is very useful for im-
age matching. In particular, the phase measure-
ments translate directly into disparity measurements:
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Figure 2: Double sine wave signal and associated
scalogram (height is magnitude, color is phase).

disp = QLQLW’E—R) - A. This gives us a means of generat-
ing disparities to subpixel accuracy without having to
explicitly interpolate the original signal.

3.2 Our phase method

The following foreshortening analysis applies
equally well to many phase methods, but we will apply
it to our phase method which uses the dense set of Ga-
bor filters used to generate the scalogram (described
in detail in [8]). Our technique is similar in spirit to
that developed by Sanger [12] but is not limited to
small disparities.

4 Analysis

In this section we show how perspective foreshort-
ening is manifest in the local spatial frequency repre-
sentation of stereo images.

To simplify the analysis, we assume the only object
in the world 1s a textured flat plate that is either par-
allel to the image plane, or rotated about the vertical
axis by some angle , and that the stereo cameras have
parallel optical (depth) and vertical (height) axes.
Thus we restrict our attention to the effects of fore-
shortening in one-dimensional image scanlines, rather
than complete two-dimensional images, since all dis-
parities will be horizontal under this assumption. Our
world model will likewise be a two-dimensional slice
through the three-dimensional scene. Figure 3 shows
an overhead schematic of a horizontal slice through
the world. By convention the parameters measuring
distances in the world will be capitalized (e.g., Xg,
ZL%, and those measuring pixel or camera distances
will be lower case (e.g., z;r, f).

Although our ultimate goal is to find the disparity
between two stereo images, we must first determine
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Figure 3: Overhead view of the foreshortening model.
X is the distance from the point exactly in front of
the left camera (the origin Og at distance Zr) to the
point (S) on the plate being studied; z;1 and z;r are
the left and right pixel indices of the image of surface
point S; the cameras are separated by baseline B and
the surface tilts away from the cameras at angle 6.

how the appearance of the object’s surface texture
changes between them. This is a geometric formu-
lation; what matters is how much of the surface is be-
ing mapped to each pixel, not the actual surface tex-
ture (i.e., color intensity). Mathematically, we want
to compare the left and right sampling rates:

§Xs Sz
: : _ bz, iR
Sampling ratio = -~ = Sop (2)
6zin ¢

Simplifying the ratio in this way, we can compute
the sampling ratio (or frequency shift) in image space
without having to explicitly model the distance Xg
along the object. Unfortunately, this implies that we
need the disparity derivative (6(z;z —2;g)). Since our
ultimate goal is to estimate disparity, it would be best
to avoid using its derivative (at best a noisy estimator)
in our calculations. The remainder of this section will
show how we can express this ratio with terms that
do not require disparity derivatives.

4.1 Relating Disparity to Surface Angle

How is disparity related to the surface angle? Equa-
tion 1 gives the disparity for an individual point, but
Figure 3 shows us how it varies across a surface:

i Xscosb (3)
f = Zp+Xgsiné
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Equations 3 and 4 give us expressions for z;;, and
z;r in terms of the focal length f, baseline B, dis-
tance Zp, surface angle #, and location on the sur-
face Xg. Solving for X5 and setting them equal yields:

B Bf
ZiR ZiL < + - tan@) 7, (5)

And finally, recalling that disparity is the difference
of the two indices:

disparity = ;0 — g = —Bl - :cu,£ tan 6(6)
4L Zr

Equation 6 is nearly the answer we want. It re-
lates disparity to the scene parameters, and does not
depend on knowing the actual surface location. It re-
quires knowledge of surface distance, unfortunately,
but we will eliminate this restriction below. When the
surface is frontoplanar it reduces to the familiar ex-
pression relating disparity to depth from Equation 1.
And for an arbitrary fixed angle 6 the disparity deriva-
tive 1s constant, i.e., the disparity varies linearly with
respect to the image location z;;. While we won'’t
take advantage of this property of the derivative, it
could prove useful to shape-recovery techniques.
4.2 Expressing the Sampling Ratio using

Image Parameters
Now that we know how the disparity and pixel loca-

tions relate to surface angle, we eliminate the deriva-
tive from Equation 2:

6 (I,’L (l + Z%tan@) — %)
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Sampling ratio =
. B
Geomelric Form = 1+ 7 tan 6 )
L

This expression is very interesting. It tells us that
for a given flat surface, the sampling ratio is constant
over both images of the surface. In other words, the
local spatial frequencies of the left and right images
are related by a simple constant scale factor. However,
Equation 7 would be useless in a stereo matcher since
it requires knowledge of the depth Z;. A program
that computed depth given depth would not be very

impressive. To eliminate Zp we solve Equation 6 for

-Z% and replace it in Equation 7, giving us this final

expression for Frequency Shift (aka Sampling Ratio):

disparity tan 6

(8)

: =1
Projected form + f—zitanf

This is what we want! Equation 8 relates param-
eters in the image plane to the surface slope 6, but
requires neither prior knowledge of the distance to the
object nor an estimate of the disparity derivative. We
will see how to manage its parameters algorithmically
in Section 5.



Frequency Shift as a function of Depth and Angle
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Figure 4: Frequency Shift as a function of Depth and
Angle. Depth is unitless relative to the baseline, and
varies from 3 to 100. Angle varies from zero to 85°.

4.3 Applicability

How important is this foreshortening analysis?
More specifically, how often do situations arise in
which the assumption that a surface is frontoplanar
causes problems for stereo systems?

To show this we will use the geometric formulation
of the Scale Factor from Equation 7. For this analysis

we consider the ratio of depth over baseline % to be a

single variable, unitless depth (relative to the camera
baseline). For example, the distance between a per-
son’s eyes would be 1, the distance to their computer
monitor 4-6, and the distance to the far wall in a typi-
cally small three-person graduate student office about
100. Figure 4 plots the near-complete Scale Factor
space for a person looking at objects in such an office.

Suppose we assume that surface depth and orien-
tation are uniformly distributed throughout a scene.
Then we can compute the probability that a surface
will require at least a 10% correction term by find-
ing the area under the 1.1 Scale Factor contour curve.
The derivation is given in [8], but the result is that
given a uniform distribution of angles and depths, the
probability that a surface will require at least a 10%
correction 1s 0.210355. Try it out; if you're sitting in
an office, see if you can find one sharply foreshortened
surface for each set of four nearly head-on surfaces in
your immediate vicinity.

Of course the probability of finding foreshortened
surfaces depends very much on the domain. Robot ve-
hicles like Carnegie Mellon’s NAVLAB often use a very
wide baseline, on the order of one meter. With the
nearest visible ground point about five meters away,
depth ratios of 5 to 20 are common in this domain. In
that range, the probability of finding a foreshortened
surface jumps to better than one in three (see Table 1).
Inspection robots typically use much smaller baselines,
but the probability of foreshortening is still signifi-
cant (nearly one in twelve). These results suggest that
many stereo vision systems could benefit from an anal-
ysis that considers the effects of foreshortening.

0.5 Surface Angle (radians)
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[ Depth Range | P(10% effect) | Example Domain |

0-100 | 0.210355 Human in office
5-20 | 0.354404 Robot Vehicle
30-100 | 0.0808227 Inspection Robot

Table 1: Probability that a surface exhibits 10% varia-
tion between images due to perspective foreshortening.
The distribution of surfaces is assumed to be uniform
within the range of orientation angles from —% to %,

and given depth ratios (distance divided by baseline).

5 Application

The analysis in Section 4 is not only theoretically
interesting, 1t can also improve the performance of real
stereo algorithms such as [3], [12] and our method [8].

5.1 Extending Phase-based Stereo Algo-
rithms

Some have argued that a small number of Gabor
filters are sufficient for stereo matching. [3] The idea
is that although the phase may vary shightly across
nearby frequencies, the variation is small enough that
the error introduced in measuring it at what might
be the wrong frequency will be insignificant. But we
have seen that frequency shifts of even 10% can occur
often. Instead of introducing error by sampling at the
wrong frequency, we can turn these perturbations to
our advantage by using them to confirm hypotheses of
surface slant.

We will need a dense sampling of the phase space to
get the most accurate results. We will also interpolate
phase values between adjacent frequencies when possi-
ble. The image scalogram provides a useful framework
for such computations, and will be used as the basis
for our foreshortening-corrected stereo algorithm.

Our method outlined in [8] uses a global minimiza-
tion strategy to find the best disparity from a list of
candidates. This framework makes it easy to include a
foreshortening correction term: in addition to search-
ing disparity space, we also search over surface angle.
Pseudocode for this revised algorithm is given in Ta-
ble 2. The only difference between this and the orig-
inal algorithm is the presence of the correction term
on the right image phase measurements.

5.2 Results

Consider the stereo pair in Figure 1. It shows a
synthetic stereo image pair of a flat plate rotated 65
degrees from the image planes, with the image of a
city scene texture-mapped onto the plate. The ac-
tual disparity map (known from the 3D world model)
and differences between the ground truth and dispar-
ity computed by three stereo methods are presented
in Figure 5.

For this demonstration of the foreshortening-
corrected algorithm, a set of 501 potential disparities
were considered (0 to 50 in steps of 0.1), and the angle
was fixed at 65 degrees. The RMS error of this result
was 0.38 pixels over the entire plate, with o = 0.63.
The bulk of this error can be attributed to two causes:
the dark spots and a subtle systematic error over the
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Figure 5: Ground Truth and computed disparity maps for a surface angled at 65°. The top row shows ground
truth in perspective on the left, a graph of a representative scanline from all methods on the right. The bottom
row shows differences between actual disparities and those computed by the foreshortening-corrected method,
Kanade/Okutomi and the uncorrected phase method, for pixels that image the plate; darker values denote larger
errors. Only differences between 0 and 2 pixels are shown, errors larger than 2 pixels appear as a 2 pixel error.
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Figure 6: Ground truth and disparity (computed by both the uncorrected and foreshortening-corrected phase
methods) for the center scanline of the city scene at 30 and 75 degrees.
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Given: A pair of greyscale images, lists of potential
disparities and surface angles, focal length f.

For each row
Compute Left and Right Scalograms L and R
For each column ¢
For each disparity d
For each angle a

correction = 1 4 —&tana

ctana—f
2

PL(Ca ’\)'
A:p(A)>threshold
|A¢z’deal(da )‘) - (¢L (Ca )‘)_
r(c+d, A correction))|sn
Return d (and @) that yield minimum error

ETTOT =

Table 2: Pseudocode for the foreshortening-corrected
algorithm. Column index ¢ is zero in the center of the
image.

surface. The spots most likely arise from an artifact
of the rendering process which caused a few nearby
pixels in one image to map to the same intensity. The
more subtle effect is that the disparity error, while
within measurement bounds at the ends and center of
the plate, varies by as much as 0.5 pixels between the
center and end of the plate (see Figure 5, upper right).

The Kanade-Okutomi variable-window refinement
method [6] uses a statistical analysis to grow the win-
dow from 3x3 to some maximum, stopping when an
error criterion (based on local changes in intensity and
disparity) is exceeded. For this test we let disparity
vary between 0 and 50 pixels (as in our method), let
the window size vary from 3 to 21 pixels, and ran for
10 iterations. It approximated the surface shape well,
but produced many more outliers and quantized the
flat tilted surface into several stair-step frontoplanar
patches (see Figure 5, upper right). The RMS error
of this method was 0.99 pixels over the entire plate,
with ¢ = 2.36.

The uncorrected phase method results are also
shown in Figure 5. The same 501 potential disparities
were considered, but foreshortening correction was not
applied. The RMS error of this result was 3.77 pixels
over the plate, with ¢ = 6.23. The main source of
error was a general flattening of the entire plate.

Other Rotation Angles The uncorrected method
does reasonably well with small angles, but at slants
greater than 30° its performance degrades by sev-
eral pixels [8] (see Figure 6). In contrast, the
foreshortening-corrected method performs well even
at 75°, though at 80° the systematic error becomes
more apparent.
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