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Abstract—Future space exploration missions will heavily rely on
autonomous planning and execution (APE) technology to im-
prove spacecraft reliability and reduce operational costs. How-
ever, this will require a complete revamp of ground operations,
i.e., from current practice of specifying pre-planned sequences
to specifying high-level goals that will later be elaborated by the
onboard APE based on spacecraft’s state and perceived environ-
ment. Particularly, determining the mission outcomes during
downlink is a challenging task. In this paper, we reconstruct
what the spacecraft has executed onboard (i.e., as-executed)
using downlinked channelized data, EVRs, and, critically, space-
craft models; We also quantitatively compare as-executed from
the “actual” run with ground-based prediction simulations. To
do this quantitative comparison, we design an N -dimensional
dynamic time warping (DTW) technique based on which we
formulate two similarity scores: (a) one related to executed
tasks whose cost function is based on interval-based generalized
intersection over union; and (b) other related to spacecraft states
whose cost function is based on normalized Manhattan distance.
Through a simulated case study of multiple flybys in Neptune-
Triton system, we demonstrate that our technique successfully
quantifies the similarity between the as-executed actual and pre-
dicts, and assess its “in-family” versus “out-of-family” behavior.
To lower the associated false positives/negatives, we also design a
multi-objective assessment metric that is a weighted summation
of the task- and timeline-related similarity scores.
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1. INTRODUCTION
Advanced onboard autonomy technologies are extremely 
beneficial f or f uture s pace m issions t hat l ack a n a-priori 
knowledge about the target space destination and/or expe-
rience dynamically-changing environmental features. Some 
examples of such situations include rovers exploring icy giant 
moons, coordinated deep space fleets, and fast flyby space-
crafts. These autonomy technologies aid in increasing sci-
ence return, improving spacecraft reliability, reducing opera-
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tional costs, or even achieving goals that cannot be attained
through regular ground operations due to communication lim-
itations, such as high latency and limited bandwidth, or short
mission lifetime. Examples of such technologies include
autonomous fault management [1], planning, scheduling, and
execution [2, 3], and selection of scientific targets [4]. De-
signing mission operations to facilitate onboard autonomous
planning and execution (APE) remains an active area of
research, and is the key focus of this paper.

An APE system allows a spacecraft to plan and execute ac-
tivities opportunistically, based on previous observations and
onboard resource availability. For instance, an APE module
can on-the-fly decide to perform follow-up observations of
a detected event of interest (say, a transient plume) if suf-
ficient power, thermal, and memory resources are available,
potentially increasing science returns compared to deploying
pre-planned sequences. Supporting such an APE requires a
paradigm shift in ground operations [5], i.e., from the current
practice of uplinking sequences to deploying only high-level
goals which are onboard elaborated by an APE.

This paper builds upon our previous work on operations for
autonomous spacecraft [6–9]. In these previous works, we
developed and tested user interfaces related to both uplink
and downlink that support ground operations for an APE.
The developed downlink tools provide an explanation of the
APE’s onboard decisions through user interfaces that capture
what decisions were made onboard, and expain why these
decisions were made in response to the perceived environ-
ment and spacecraft states, and the high-level goals uplinked
by ground operators. A case study on the operations of
an autonomous spacecraft performing multiple flybys of the
Neptune-Triton system was simulated [7] and an in-depth
design analysis was conducted, wherein JPL ground oper-
ators assessed the developed user interfaces and identified
directions for future development.

Determining the mission outcomes for an APE after downlink
still remains a challenging task - to the author’s knowledge,
no quantitative tools and analyses exist as of now. The
downlink operations must be able to reconstruct the APE’s
decisions and identify any execution anomalies. Identifying
execution anomalies is a significantly more complex task
compared to the current practice of confirming the nominal
execution of a pre-planned sequence, whose dependency on
the spacecraft state is comparatively more predictable [10].
Particularly, defining “anomalous” behavior for an APE is not
straightforward as an APE might have choose from a large
number of possible execution paths - this choice depends
on spacecraft states and sensed environments and the ground
operators are unable to predict this execution path in advance.
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Contributions

In this paper, we propose new workflows that can interact
with our previously-developed user interfaces and support
downlink operators in the quantitative analysis of the APE’s
onboard decisions. Our key objectives are:

1. Reconstructing “as-executed” tasks and spacecraft states
(and uncertainties) in a way intuitive for operators by exploit-
ing downlinked channelized data, event notifications [com-
monly referred to as EVRs at the Jet Propulsion Laboratory
(JPL)], and, critically, spacecraft models.
2. Quantitatively comparing as-executed outcomes from the
“actual” run with “predictions” from ground-based Monte
Carlo (MC) simulations to assess whether the APE’s execu-
tion is “in-family” to what has been observed on the ground.

Note that, “as-executed actual” depicts what a spacecraft
has executed during the actual mission while “as-executed
predicts” refers to what has been executed by the spacecraft
during ground-based MC simulations. To clarify, this paper
focuses on the “execution aspect of APE and does not deal
with “planning”.

The quantitative tools being designed to assess the “in-
family” behavior of the as-executed actual needs to have the
following desirable properties: (a) shift invariant, i.e., lack
of sensitivity to differences in start times between actual and
ground predicts; (b) robust to mismatches in initial values,
e.g., states and resource values are unlikely to perfectly
match; and (c) able to deal with sparse data or different
sampling rates, which depends on the available communica-
tion bandwidth from the spacecraft and the available ground
resources to perform a large number of MC simulations.

To perform predicts versus actual comparison, we propose the
use of Dynamic Time Warping (DTW) [11], which is a well-
known technique in the field of speech recognition to cope
with different speaking speeds and accents. DTW evaluates
two temporal sequences (which may vary in speed or do not
perfectly sync up) based on a user-defined cost formulation
to provide a measure of similarity. In this paper, we design
N -dimensional DTW to formulate two similarity scores, of
which one is related to executed tasks and the other is related
to spacecraft states. Particularly, we compare the spacecraft
states between the as-executed actual and any predict by
modeling the associated cost as a normalized version of the
Manhattan distance [12]. Manhattan distance is a distance
measure that is calculated by taking the absolute sum of
distances between the coordinates along different axes. On
the other hand, the similarity measure for executed tasks is
based on the theory of set-based generalized intersection over
union (GIoU) [13], where each task is represented as a set
interval based on its start and end times of execution. GIoU
is a generalized version of intersection over union (IoU) that
compares the overlap between two arbitrary shapes (in terms
of areas or volumes). This generalization keeps the major
properties of IoU, namely non-negativity, scale invariance,
symmetry, triangle inequality while rectifying its weakness
(i.e., penalizing the case when no overlap exists between two
shapes). The use of N -dim DTW ensures shift invariance,
robustness against initial value mismatch and sparse data.

We also design a multi-objective assessment metric is a
weighted summation of the similarity scores associated with
tasks and spacecraft states. For increased robustness against
false alarms, we independently extract a few as-executed pre-
dicts with highest match to that of actual based on tasks and
spacecraft states, and thereafter, compute the multi-objective

assessment metric for the ones common between both.

While it is not possible to anticipate all possible scenarios
that the spacecraft will encounter, the uncertainty related to
the environment (e.g., likelihood that a plume is detected)
and the spacecraft itself (e.g., the likelihood of components
failures) can be modelled on the ground to a certain extent.
An exhaustive modeling of these uncertainties is an active
research area and beyond the scope of this paper. In this
paper, we assume the ground-based MC simulations to be ad-
equately representative of the possible execution paths. With
this assumption in mind, we can draw parallels between “in-
family” behavior and nominal execution of an APE system,
and similarly, “out-of-family” and execution anomaly.

Although our framework has been generalized to accom-
modate different onboard planning and scheduling technolo-
gies, in this paper, we utilize a flight-proven planning and
execution system, namely MEXEC (Multi-mission EXEC-
utive [3]). MEXEC that has been demonstrated on the
ASTERIA CubeSat and was used on the JPL’s Europa Lander
Surface Mission Autonomy project. For validation, we utilize
our previously-developed simulation study on multiple fly-
bys of the Neptune-Triton system that has a MEXEC-based
APE [7]. We perform a number of MC simulations of which
one is marked “as-executed actual” (to represent in-flight
APE behavior) while the rest are “as-executed predicts”.
We demonstrate that our tool can quantitatively evaluate the
similarity between the as-executed actual and predicts, and
assess its “in-family” versus “out-of-family” behavior.

Organization

The rest of the paper is organized as follows. Section 2
provides an overview on MEXEC-based APE framework.
Section 3 explains the reconstruction of as-executed. Sec-
tion 4 describes our N -dimensional DTW that performs
quantitative comparison between as-executed predicts and ac-
tual. Section 5 discusses our simulation setup, experimental
results and analysis. Section 6 provides concluding remarks
and lay out directions for future research.

2. BACKGROUND
This section provides a background on MEXEC. As ex-
plained in Section 1, this paper considers MEXEC as the core
APE onboard the autonomous spacecraft. In MEXEC [3],
task networks are used by ground operators to represent their
high-level goals. Goals are expressed in the form of tasks,
which essentially indicate a desired change to the spacecraft.
Tasks are identified by the following key elements: 1) unique
ID, 2) a priority value to inform scheduling order, 3) the
conditions (referred to as constraints) to be satisfied for a
task to proceed for execution, and 4) the expected after-effects
(referred to as impacts) of task execution on spacecraft states.
Some examples of tasks are taking three images using wide-
angle camera, logging magnetometer when Triton is in view.

The temporal sequence of each spacecraft state (also termed
as a resource) that appears as either a constraint and/or
an impact is referred to as timeline. Timelines are cat-
egorized either as internal, which portray states managed
internally by MEXEC, or as external, which represents state
values reported by the spacecraft sensors (logged in the state
database). Impacts from tasks change the timeline by assign-
ing a specific value, specific change in value or a specific
change in rate of the value. State updates received from the
state database are also applied to the timelines to keep them
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synchronized with the latest values logged by the sensors.

An overview of the MEXEC functionality is as follows: The
ground operators uplink a task network to the spacecraft,
which is read by the planner of the onboard APE system.
The planner schedules the tasks and checks for conflicts using
the system state from the state database. When close to the
start time of a task, the planner passes it to the executive,
which performs real-time constraint checking to ensure safe
execution of the task. Task execution updates are sent from
the executive to the planner to keep the planner informed in
case re-planning is necessary.

The role of the executive is as follows: The executive takes
care of task execution and handles adjustments needed for
any deviations in execution. The MEXEC executive converts
constraints and control conditions into Boolean expression
trees, which are later evaluated at each mode of task execution
on a per task basis. The evaluation is based on the spacecraft
state reported from the state database or estimated from
internal state propagation using spacecraft models. As time
progresses, each task transitions to a new mode and any faults
are reported to the planner - there are a total of six modes [3]:

1. Idle: If the pre-execution constraints are not satisfied
within a certain timeout interval, the task is considered to
have failed. If the constraints are satisfied, then the task gets
pushed to the MEXEC executive for execution. Until the task
gets committed, it is considered to be in idle mode.
2. Command dispatch: The executive dispatches the com-
mand associated with the task and starts monitoring any
constraints that need to be maintained during task execution.
3. Command running: The executive expects a command
response to indicate that the command was dispatched to
the respective subsystem/instrument and has been received
successfully. The task is being executed in this stage.
4. Wait end: The command completion is received indicating
the task completion by the subsystem/instrument. The exec-
utive waits until wait end condition gets satisfied.
5. Cleanup: The executive performs the clean up protocols.
6. Complete: If the command response comes back with an
error, or does not come back within a defined timeout interval,
the task fails. Otherwise, the task completes with success
after the end duration of the task has been reached.

3. RECONSTRUCTION OF AS-EXECUTED
This section explains the reconstruction of an as-executed,
given downlinked EVRs, spacrcraft models and channelized
data. We consider an MEXEC-based APE framework, an
overview of which is explained in Section 2.

Figure 2 provides an overview of the schema of our as-
executed. Our as-executed is designed to be a JavaScript
file (.js) and consists of two main components: one related
to executed tasks and the other related to recorded timeline
values. We extract task information from EVRs and timeline
values from the state database and internal state propagation
of spacecraft models. The task network and the EVRs are
standardized in the current release of the MEXEC (version
1.2.0 at the time of writing this paper), and hence, the same
pre-processing pipelines can be utilized for any mission.

As shown in Figure 2, our schema for each task in as-executed
is designed to include the following information: start, end,
value and properties. The start and end correspond to times
when the task transitions to the command running mode

and the complete mode, respectively. The value refers to
the task name, which is obtained either from task network
or internally assigned by MEXEC based on task ID. The
properties provide additional information related to mode
transitions, task duration, task ID, task result and overall
result. Particularly, the six mode transition times discussed
in Section 2 are logged in as-executed, i.e., idle, command
dispatch, command running, wait end, cleanup and complete.
Note that inactive and commit times listed in the schema
are for downlink redundancy and are not relevant for this
paper’s focus. These intermediate mode transition times
provide ground operators with more granularity regarding
how a certain task execution progresses over time. The task
result outputs either failure or success of the task execution
and constraint checking by the MEXEC executive. On the
other hand, the overall result for any task corresponds to
the failure or success in achieving the relevant science goals
and in logging desired observations. For example, when the
MEXEC onboard an autonomous spacecraft that is experi-
encing large vibrations interfaces with a wide-angle camera
to take three blurry images, the task result is logged to be a
success but the overall result is reported as a failure. This is
because, while the executive has successfully completed all
the mode transitions without any error, the science goal of
logging useful science images was unsuccessful.

Figure 1: Overview of onboard as-executed comprising of
executed tasks and recorded timelines.

Unlike tasks which are obtained from standardized EVRs,
timelines can be extracted either from EVRs or channelized
data (based on mission constraints). For each timeline, we
design our schema in as-executed to include the following
information: ID, name, type, value-type, interpolation, start,
value and properties. Similar to a task ID, timeline ID is
a unique identifier for each timeline, wherein a positive ID
number represents an external timeline and negative ID indi-
cates an internal one. The type, value-type and interpolation
of any timeline are obtained from task network. The “start”
corresponds to the time at which the timeline “value” has
been reported by the state database. For internal timeline
whose value change is only triggered by tasks, the start and
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value in as-executed aligns with either the task start time and
pre-condition impact value or the task end time and post-
condition impact value. These pre- and post-condition impact
models are defined in task network. Under properties, the
mean and covariance estimates of the timeline are logged. We
estimate the mean and covariance using a Kalman filter-based
state estimation technique, which consists of a measurement
update and a predict step. To perform the predict step, we
leverage the impact models pre-defined in the task network.
On the other hand, we utilize the extracted timeline values
from EVRs and/or channelized data as measurements to
perform the measurement update step. These state estimates
provide interesting insights regarding how closely the impact
models comply with the actual spacecraft states when a cer-
tain task is executed. Additionally, the state estimates are also
beneficial in interpolating the timeline behavior in the event
of an onboard anomaly or missing data during downlink.

4. PREDICTS VERSUS ACTUAL COMPARISON
To assess whether what an autonomous spacecraft has exe-
cuted onboard falls in-family with what is expected, we per-
form a quantitative comparison between as-executed predicts
and actual. As explained in Section 1, we design an N -
dim DTW to compute two similarity scores: one based on
comparison of tasks between as-executed actual and predicts
and the other based on comparison of timelines between
as-executed actual and predicts. We also design a multi-
objective assessment metric that is a weighted average of task
and timeline-based similarity scores.

Figure 2: Illustrative of a 1-dim DTW taken from [14].

Considering ∆t to be the sampling rate of the executive and

Ttotal to be the scenario duration, we denote K = 1+
Ttotal

∆t
to be the number of discrete timesteps at which tasks and
timelines are sampled. Algorithm 1 shows the pseudocode for
N -dim DTW that considers two N -dim temporal sequences
of length K and cost function C as inputs and outputs the
similarity score p ∈ R. We denote the task and timeline re-
lated similarity scores by ptask ∈ [0, 1] ⊂ R and ptimeline ∈
[0, 1] ⊂ R, respectively. Note that values closer to 1 for
pjtask and pjtimeline indicate a higher similarity between the
“as-executed actual” and any jth predict, while lower values
closer to 0 indicates otherwise. To obtain a dissimilarity score
instead, remove 1 in the return output of Algorithm 1.

To execute N -dim DTW, we need to model the cost formulae
for tasks and timelines, which are explained in the below
subsections.

Algorithm 1 Pseudocode for N -dim DTW for a given cost

Two sequences A,B ∈ RK×N and cost function C

for p ∈ [0, . . . , N ] do
for q ∈ [0, . . . , N ] do

dtw[p, q] = inf
end for
end for

for p ∈ [0, . . . , N ] do
for q ∈ [0, . . . , N ] do
dtw[p, q] = C(Ap ∈ R1×N ,Bq ∈ R1×N )+
min(dtw[p− 1, q], dtw[p, q − 1], dtw[p− 1, q − 1])

end for
end for

return p = 1−
(
dtw[N,N ]/max(dtw)

)
Task: Cost Formulation using GIoU

To apply the N -dim DTW technique, we need to first manip-
ulate the task representation from that based on start, end and
mode transition times (in as-executed) to that of a temporal
sequence. Given N tasks, we represent each nth task as a
discrete, temporal sequence X ∈ RK×N comprising of values
among {1, 2, 3, 4, 5, 6}. For any nth task at any kth time
step (k ∈ K), we define 1, 2, 3, 4, 5, 6 to represents the modes
in the following order: idle, command dispatch, command
running, wait end, cleanup and complete.

The cost function used in N -dim DTW for comparing exe-
cuted tasks in as-executed actual with that in any jth predict
(considering a total of M predict simulations) is defined as
follows (note that cost is lower if there exists higher similarity
between actual and predict):

C(Xactual,Xpredict,j) =

{1,2,3,4,5,6}∑
i

wi
task tGIoU

(
A(Xactual, i), A(Xpredict,j , i)

)
(1)

where wi
task denotes the user-defined weight given to any

ith mode such that
∑

i w
i
task = 1, tGIoU(·, ·) denotes the

task-based GIoU metric (see Algorithm 2) and A(X, i) (see
Eq. (2)) denotes the N -dim set interval formulated from a
task-based temporal sequence X and the desired ith mode.
Note that, tGIoU ranges between [0, 1] with 1 indicating a
close similarity between any ith task mode being compared
while 0 indicating otherwise.

A(X, i) =[find first(X1 = i), find last(X1 = i)]× · · ·
[find first(Xn = i), find last(Xn = i)]× · · ·
[find first(XN = i), find last(XN = i)] (2)

where find first denotes the first time step where the tem-
poral sequence X equals i, which in-turn equals the time
reported for the ith mode in as-executed .js file. Similarly,
find end denotes the last time step where the temporal
sequence X equals i, which is in-turn the time reported for
the i + 1th mode in as-executed .js file. See Section 3 for
more details on the schema for the as-executed .js file.

4
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Essentially, we compare the tasks across two as-executed by
analyzing the similarity between the six task mode duration.
This is beneficial in penalizing the tasks that are successfully
dispatched to the spacecraft subsystem/instrument but do not
reach complete mode due to errors or timeouts. Note that our
current cost formulation does not penalize the tasks whose
overall result is different from that of task result - this will be
explored in our future work.

Algorithm 2 Pseudocode for task-based GIoU metric
tGIoU(A1, A2) ∈ [0, 1], refer to [13] for more details.

Two set intervals A1, A2 ∈ RN

Given A1 and A2, find the smallest enclosing convex object
C ∈ RN .

IoU =

∣∣A1 ∩ A2

∣∣∣∣A1 ∪ A2

∣∣
g = IoU −

∣∣C \ (A1 ∪ A2))
∣∣

|C|
return 1− g

Timelines: Cost Calculation using NMD

Given N number of total timelines, we represent each nth
timeline as a continuous, bounded, temporal sequence Y ∈
RK×N . The bounds for each nth timeline are defined in task
network. Utilizing the theory of NMD, we formulate the cost
for timeline comparison as follows (note that cost is lower if
there exists higher similarity between actual and predict):

C(Yactual,Ypredict,j) =∑
n∈N

wn
timeline

∣∣∣Ỹn

actual − Ỹ
n

predict,j

∣∣∣
2

(3)

where wn
timeline denotes the user-defined weight given to any

nth timeline such that
∑

n∈N wn
timeline = 1 and Ỹ

n

actual =

Yn
actual − ln

un − ln
∈ [0, 1] and Ỹ

n

predict,j =
Yn

predict,j − ln

un − ln
∈

[0, 1] with [ln, un] representing the known bounds of the
nth timeline. Note that, the multiplying factor 2 is added to
normalize the cost function to lie between [0, 1]. Additionally,
note that, there is no correlation between the notations N and
n in this section and the earlier one on tasks, we only re-used
these notations for the sake of brevity.

Multi-Objective Assessment Metric

Using Algorithm 1, 2 and Eqs. (1) and (2), we independently
compute the set of predicts associated with the highest task-
based similarity scores when compared against “as-executed
actual”. We denote these set of predicts by Ltask and the cor-
responding costs by p1task, · · · , p

|Ltask|
task , where |·| denotes the

cardinal number of the set. Similarly, using Algorithm 1 and
Eqs. (3), we compute the predict set (defined by Ltimeline)
exhibiting highest timeline-based similarity scores, namely
p1timeline, · · · , p

|Ltimeline|
timeline . Given that the impact models

associated with tasks govern the timeline values, there is
expected to be a significant correlation between that of task
and timeline-related similarity scores. Ideally, the set of
predicts exhibiting highest task-based similarity score should
match that of the predict set exhibiting the highest timeline-
based similarity scores, i.e., Ltask == Ltimeline. However,
in reality, these two sets may not be equal given measurement

noise and missing data (if any) in timeline values and unmod-
eled components of mode transitions in tasks.

In Eq. (4), we design a multi-objective assessment met-
ric pclosest ∈ [0, 1] that provides a quantitative measure on
how close the as-executed actual is to that of predicts.

pclosest = max
j∈{Ltask∩Ltimeline}

pj
task + pj

timeline

2
(4)

As a by-product, we can identify the jclosest as-executed pre-
dict whose input hyperparameters can provide useful insights
regarding the unknown/perceived state of the environment.

5. EXPERIMENTAL SETUP AND RESULTS
We validate our proposed workflows, namely reconstruction
of as-executed and comparison of predicts and actuals, using
a simulation case study.

Simulation Setup

We utilize our prior work [6–9] on Neptune-Triton simulation
setup, which involves five classes of high-level science goals
with varying autonomy capabilities (see Figure 3): moni-
toring, mapping, targeted observations, event-driven oppor-
tunistic observations, and opportunistic monitoring. With
these science goals in mind, a number of MC simulations
exercising the instrument suite and variability in the perceived
environment state and spacecraft initial states were defined.
Some examples of variable science goals that impact the
observation time, power, and available data volume include
detecting plumes on the limb of Triton, variability in magne-
tospheric activity, and detecting storms at Neptune. This is an
interesting case study because the high latency, low available
bandwidth, short duration of flybys, and dynamic scientific
phenomena makes the use of APE system an attractive option
for fulfilling the science objectives.

Results and Analysis: Reconstruction of As-executed

We utilize our previously-developed downlink user interface,
known as Plan Reconstruction tool [8], for validating and
visualizing the reconstruction of as-executed. The Plan Re-
construction tool plays back what the spacecraft planned to
do in incremental steps (i.e., plan) based on estimated time-
line (state and resource) values, and shows what tasks were
actually executed (i.e., as-executed). This can be leveraged
by the downlink operators to assess what the onboard planner
did and determine the cause of its decisions. In Figure 4,
we overlap the as-executed with that of a plan generated by
the planner for a nominal run (i.e., with no anomalies or
instrument failures). To alert the ground operators of the
status of executed goals, indicators show either waiting to
be “scheduled” (i.e., idle mode), executing one among the
other “task modes”, or “success/failure” after task execution.
Qualitatively, we validate that both our as-executed tasks and
timelines, which are generated from downlinked EVRs, bear
close resemblance to the plan generated by the planner (we
see some expected variations in start times between plan and
as-executed). We also observe that our as-executed accurately
captures the mode transitions, which provide useful insights
regarding how the task execution progresses over time and
impacts different timeline values.

Results and Analysis: N -dim DTW

For this set of results, we utilize a simplified simulation sce-
nario of the Neptune-Triton case study, wherein we generate

5
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Figure 3: Overview of science goals in our Neptune-Triton simulation study. See our prior work [8] for more details.

Figure 4: Validation of the reconstructed as-executed against a plan generated by the planner.
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(a) Task across base predict and “in-family” actual (b) Task across base predict and “out-of-family” actual

(c) Timeline across base predict and “in-family” actual (d) Timeline across base predict and “out-of-family” actual

Figure 5: Comparison of base predict (in blue with hashed markers for tasks and solid for timelines) with that of “in-
family” and “out-of-family” actual run (in magenta with dotted markers for tasks and dashed for timelines).

(a) High similarity scores indicating in-family (b) Low similarity scores indicating out-of-family

Figure 6: Task and timeline-based similarity scores for (a) In-family; and (b) Out-of-family comparison of as-executed
actual with respect to predicts. Our proposed N -dim DTW accurately identifies the as-executed actual that lies in family
with the ground-based MC simulations.

one run termed “base predict” with 10 tasks, 5 timelines and a
total duration of 1 hr. We reconstruct the as-executed of base
predict run, and thereafter, emulate the tasks and timelines
with simulated biases and added measurement noise to create
a predict database of 150 MC simulations. Additionally,
we generate two validation scenarios termed as “as-executed
actual”, wherein one actual run is in “in-family” with that of
the MC predicts while the other is “out-of-family”.

Figure 5 qualitatively compares the as-executed between one
base predict (shown in blue) and the two actuals (shown in
magenta). When comparing the base predict with in-family

actual, most of the task execution times and timeline trends
closely align, however, no such similarities are observed in
comparison with out-of-family actual. Figure 5(a) and 5(c)
showcases a close alignment between the as-executed tasks
and timelines, thereby indicating an in-family match. On
the other hand, Figures 5(b) and 5(d) showcases significant
differences in the trends of both tasks and timelines, which
indicates an out-of-family behavior.

We also demonstrate the quantitative comparison. When
comparing as-executed predicts and with an “in-family” ac-
tual, Figure 6(a) showcases high similarity scores for both
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tasks (with mean=0.78 and standard deviation=0.21) and
timelines (with mean=0.85 and standard deviation=0.14).
Similarly, when comparing as-executed predicts and with an
“out-of-family” actual in Figure 6(b), we demonstrate that our
proposed technique showcases low similarity scores for both
tasks (with mean=1.4e−3 and standard deviation=3e−3) and
timelines (with mean=0.13 and standard deviation=0.033).
We, thus, demonstrate that our proposed N -DTW accurately
identifies both in-family and out-of-family behavior.

6. SUMMARY
To summarize, we delve into the explainability aspect of the
downlink operations for an autonomous spacecraft. We pro-
posed new techniques that will enable the ground operators to
reconstruct what an autonomous planner and executive (APE)
has executed onboard (termed as as-executed actual in this
paper). We also designed an N -dimensional DTW technique
and subsequently, a multi-objective assessment metric, that
quantitatively validates whether the as-executed actual lies
“in-family” with the as-executed predicts (obtained from
ground-based Monte Carlo simulations). Through simulated
experiments, we successfully validated that our proposed
approach can accurately estimate whether the reconstructed
as-executed actual aligns with what is expected on the ground
and if any anomalies have occurred.

This is the first comprehensive work that performs recon-
struction of what the spacecraft’s APE has executed on-
board and identifies any anomalies. Our work will provide
beneficial insights for the safe deployment of APE systems
on future autonomous space missions. While our work
has been demonstrated for an autonomous spacecraft in the
Neptune-Triton system, we want to emphasize that these pro-
posed workflows and algorithms can be generalized to other
MEXEC-based missions, e.g., the Europa Lander Surface
Mission Autonomy project, and also other APE systems like
that to be deployed onboard the Mars 2020 Perserverance
rover in near-future.

Future work will continue to focus on the integration of these
new workflows and algorithms with the Plan Reconstruction
tool (developed in our prior work). We also aim to conduct a
detailed study on the increase in compute cost as the number
of tasks and timelines increase (which is a likely scenario as
the missions become more complex in the future).
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