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Abstract

One considered approach in the planned Mars Sample Return (MSR) campaign in-
volves accurately identifying and retrieving sample tubes from the Martian surface.
This paper presents an innovative approach that utilises lightweight computer-vision
techniques to enhance the efficiency and accuracy of the Sample Transfer Arm (STA)
aboard the MSR lander. Our methodology employs the YOLOvVS deep learning model
for image segmentation, and centroid detection of tubes in the challenging dusty Mar-
tian environment. These detected masks and centroids provide the foundation for
constructing an outlined representation of the tubes, which is critical for precise spa-
tial orientation. We exploit the knowledge of the object geometry to find key points
and match them using their relative positions with respect to the geometry. Subse-
quently, a Perspective-n-Point (PnP) algorithm with RANSAC utilizes this outline and
pre-computed 3D coordinates to ascertain the tube’s pose. This enables the STA’s
camera-equipped gripper to locate and retrieve the samples accurately. This process
is meticulously tailored for the constrained computational resources available on Mar-
tian missions, addressing limitations in processing speed and lack of parallelization
capabilities. Extensive simulations under Martian-like conditions demonstrate the ro-
bustness and reliability of our approach, which would be a necessary technology to

enable a backup tube retrieval concept for a MSR campaign using a robotic arm by
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ensuring precise and efficient sample collection. This method can achieve sub-degree
and sub-centimeter accuracy with a single image.
Keywords: Mars sample return, YOLOvVS image segmentation, PnP pose estimation,

robotic manipulation.

1. Introduction

The quest for understanding Mars has been a pivotal aspect of space exploration
in the 21st century. Among the various missions aimed at unraveling the mysteries of
the Red Planet, the Mars Sample Return! (MSR) campaign stands out as a landmark
endeavor, explicitly targeting the study of potential past life on Mars. This campaign,
designed to collect and return samples from the Martian surface to Earth, promises to
provide unprecedented insights into Martian geology and potential bio-signatures.

The MSR campaign is composed of several critical stages. Each one is integral to
the successful return of Martian samples. The first stage of the multi-part campaign
was the Perseverance rover which launched in 2020 and as of the writing of this pa-
per has collected a number of samples, some of which were deposited on the Martian
surface. The second part of this campaign is the Sample Return Lander (SRL). The
lander is tasked with receiving Returnable Sample Tube Assemblies (RSTAs) and in-
serting them into the Orbital Sample (OS) canister. The design approach considered
here utilizes a Sample Transfer Arm (STA), guided by an end-effector mounted STA
Camera. The RSTAs are provided to SRL with a handling glove attached as an “RSTA
Glove Assembly" or Returnable Glove Assembly (RGA) as it will be referred to in this
paper. The primary method of transfer of RGAs to SRL would be via M2020, however
a backup campaign concept is defined for RGAs to be delivered to the surface to be

picked up by the STA. This backup campaign, whose Concep of Operations (conops)
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Figure 1: Image concept of the Sample Return Arm picking the RGA from the Martian surface. Courtesy of
ESA/NASA.

and method of sample delivery is outside the scope of this paper, would interface with
the lander by depositing an RGA on the surface of Mars in the STA’s reachable area.
This paper is primarily concerned with a proposed tentative set of conops for this trans-
fer, which assumed the RGA will be dropped in a position such that the RGA will be
visible in an STA Camera image. The notional requirements for the grasping are 1
cm lateral error, 1 cm of normal error, 5 degrees of tilt out of the ground plane, and 2
degrees of clocking in the ground plane. The third stage of the proposed campaign is a
rocket that is tasked with launching the sample tubes into orbit called the Mars Ascent
Vehicle (MAV), which has the filled OS at the tip of the rocket. In the fourth and final
stage, these samples are transferred to an orbiter, which then positions itself to launch
them back toward Earth on a carefully calculated trajectory.

As mentioned, a critical component of the proposed MSR campaign concept in-
volves the precise and efficient retrieval of sample tubes by the STA aboard the MSR
lander from the surface in case Perseverance fails, either fully or partially, due to wear
over time. Figure 1 illustrates a concept of the STA robotic arm performing the pickup
operation after identifying where the tube is on the surface. Operating in Mars’s harsh
and unpredictable environment, the STA must accurately locate, identify, and handle
geological samples, primarily enabled by its dual redundant monocular greyscale 4-

MegaPixel cameras (STACams), which are the primary method for aligning the STA to



targets for tube transfer. Traditional robotic manipulation and object retrieval methods
are hindered due to the unique Martian terrain, variable lighting conditions, and the
stringent payload and computational constraints of space missions. While the eventual
conops are not fully defined, this work assumes that this localization will be required
to be executed on-board the spacecraft in order to execute the campaign timeline. The
on-board processor is assumed to provide ~ 100 MHz of CPU available and ~ 500 MB
of RAM.

The objective of this research is to develop and implement an advanced state-of-the-
art computer vision system that enhances the capabilities of the STA. By employing a
recent lightweight deep-learning detector, specifically the YOLOvS [1] network (which
was the latest at the time when the testing was conducted) for image segmentation and
object detection, our goal is to accurately determine the position and orientation of
sample tubes on the Martian soil. This information is crucial for enabling the STA’s
robotic arm to retrieve these samples successfully.

We introduce introduces a novel geometric approach that integrates state-of-the-art
computer vision techniques with the practical constraints of space exploration. We have
created a new pipeline that exploits the knowledge of the localizable objects’ geometry
to reliably extract and associate key points to successfully find the pose of the RGA
on the Martian surface with a single monocular image. We extract 2D key points
from the perimeter of a baseline rendered image of the RGA, for which we know the
associated 3D coordinates, and match those 3D key points with those extracted from
a monocular test image. The key element for the association of key point mappings
from the rendered and test image is a proposed angular mapping of the features to
optimize the point correspondences and ensure a correct estimation. The resulting 2D-
3D correspondences from this mapping are then passed through a RANSAC [2] based
Perspective-n-Point (PnP) solver to extract the final pose of the tube [3].

The paper is structured as follows: Section 2 describes some related work on feature
matching and learning-based computer vision and applications on different industries
including space. Section 3 outlines the pipeline and algorithms. Section 4 describes
the simulator, datasets, and experimental process. Section 4.3 provides results from the

pipeline execution. Finally, sections 5 and 6 provide commentary on the results and



future applications.

Contributions:
Here is a summary of the contributions of this work:

e The development of a new pose estimation pipeline that leverages known geom-

etry for improved accuracy in object localization and detection.

e A novel approach to cluttered texture rejection that enhances the robustness of
template matching techniques in unstructured environments, a common chal-

lenge in our field.

o A systematic evaluation of our algorithm on an extensive dataset comprising a
total of 1500 images acquired in varying conditions such as pose, lighting, and

terrain.

2. Related Work

Finding objects in 3D space has been a common task for robotic arms in multiple
domains. On-orbit satellite-servicing missions place similar—and often stricter—demands
on robotic manipulators: a capture tool mounted at the arm’s end-effector must be lo-
calised to within millimetres and a few degrees with respect to a non-co-operative client

vehicle before docking or component exchange can proceed as illustrated in Figure 2.

Figure 2: NASA’s conceptual servicing spacecraft, extends its robotic arm to grab and refuel a satellite. [4]

Unlike factory pick-and-place systems that operate in structured, repeatable envi-

ronments, space servicers must perform real-time pose estimation under uncontrolled



illumination, specular surfaces, and constrained compute budgets. Recent servicing
demonstrators therefore integrate vision-based relative-navigation modules that iden-
tify the client spacecraft, segment key structural features (antenna booms, solar-panel
corners, nozzle rims), and solve for 6-DoF pose using geometric or learning-based
techniques. For example [5] introduces a transformer based architecture to estimate
the pose using different probabilistic distributions to reduce and understand the pose
uncertainty and correlated to a specific navigation state. Another example, in [6] ex-
ploits the overall geometry of the spacecraft by fitting bounding boxes using convo-
lutional neural networks to extract a 3D model and respective states. This is key if
another satellite with an end-effector is to provide a service and wants to interact with
a specific component of the target spacecraft. Identifying the compoent itself is its own
task that can be solved by training the end-effector as a pick-and-place machine using
reinforcement learning to distinguish the object and optimize the trajectory [7, 8].

Accurate 6-DoF pose estimation is essential for any manipulator that must grasp or
service a target object. The task has been central to computer-vision research since the
field’s inception, with early work addressing head-tracked virtual-reality displays [9].
A comprehensive survey traces the evolution of template-, feature-, and learning-based
pipelines and formalises their algorithmic taxonomy [10]. A comparative analysis of
PnP solvers under sparse key-point noise offers guidance for hardware-constrained
manipulators such as the Sample Transfer Arm (STA) [11]. An analytic treatment
of the efficient PnP algorithm quantifies the stability limits that arise when only four
non-coplanar correspondences are available [12]. Real-time detectors that regress 3D
bounding boxes are reviewed with an emphasis on latency—accuracy trade-offs [13]. A
survey of open challenges highlights failure modes in texture-less or highly specular en-
vironments that resemble Martian sample tubes [14]. A separate overview benchmarks
end-to-end deep networks against classical pipelines and discusses their memory foot-
prints [15]. These studies converge on three canonical method families—template-based,
feature-based, and learning-based—and collectively emphasise the need for solutions
that operate with a single monocular camera, because the STA’s dual imagers are
mission-redundant and therefore unavailable for stereo processing.

Alternative depth sources are likewise impractical. Structure-from-motion would



require a stereo baseline generated by arm motion, but the baseline attainable within
the STA workspace is too small to yield reliable depth, and error grows rapidly with
target distance. Active-depth sensors such as LiDAR or RGB-D cameras are excluded
by mass, and power constraints. Consequently, stereo-based or depth-cloud methods
lie outside the scope of this study; the remainder of the paper focuses exclusively on

monocular techniques that satisfy the STA’s 100 MHz, 500 MB processing envelope.

2.1. Template-based pose estimation

This class of methods utilizes a template to detect a unique or specific pattern in
an image. The template is usually a rendered silhouette of the CAD mesh, and it is
accompanied by pre-computed 2D keypoints that serve as matching anchors. As new
features are detected on a new image, a matching algorithm compares them to the
closest externally computed key points and returns an estimation of the corresponding
pose. However, template pipelines are sensitive to scale because they require thousands
of rendered views. This overhead can be mitigated by using lower-resolution templates
or by applying a multi-resolution search pyramid. In the publication [16] a technique
for matching CAD models is explained. The method involves using edge detection
on the model’s image, creating hierarchical projected viewpoints, and then comparing
them using an edge-similarity measure. In [17], the authors propose a fast template
matching strategy for real-time pose estimation of texture-less objects in a single cam-
era image. The key novelty is the hierarchical searching strategy through a template
pyramid. In [18], the authors use a Histogram of Oriented Gradients edge detection
and regression to estimate the pose for texture-less objects. Finally, the work in [19]
proposed a new approach for pose estimation of smooth metal parts in intelligent man-
ufacturing using high-level geometric features and correlated straight contours. The
approach achieves higher accuracy and robustness with fewer templates via practical

algorithms that modify existing line-feature descriptors.

2.2. Featured-based pose estimation

Feature-based pose estimation begins by extracting distinctive 2D keypoints; the

SIFT detector is a canonical implementation [20]. After keypoints are matched to their



corresponding 3D landmarks, a Perspective-n-Point (PnP) solver recovers the camera
pose when the intrinsics are known. One study presents a closed-form algorithm that
requires only four non-coplanar correspondences by adopting a scaled-orthographic
approximation [21]. A subsequent investigation linearises the quadratic system that
appears with four points or lines, thereby accelerating pose computation without iter-
ative refinement [22]. Another contribution aligns multi-view feature tracks by first
constructing a mosaic, computing a homography, and then minimising reprojection er-
ror to obtain the final pose [23]. These analytical solutions reduce computational load

and are therefore attractive for resource-constrained flight processors.

2.3. Learning-based pose estimation

Recent work employs deep-learning pipelines that infer object pose end-to-end. A
convolutional network that iteratively refines 2D keypoint locations and updates the
3D pose estimate from a single RGB image demonstrates this principle [24]. A trans-
former model that encodes a sparse feature set and decodes relational patterns across
a multi-scale pyramid extends the concept to handle wider viewpoint and appearance
variation [25]. A survey of on-orbit vision systems reports that flight prototypes in-
creasingly rely on such fully connected or transformer architectures despite their high
computational demand [26]. In [5] as mentioned before, a transformer based architec-
ture estimates the pose using different probabilistic distributions to reduce and under-
stand the pose uncertainty and correlated to a specific navigation state. A dedicated
variant of YOLOVS8 has been introduced to regress human joint pose; preliminary re-
sults indicate sizeable errors when the model is applied to rigid bodies, and the imple-
mentation remains in beta [1]. A more recent example of a SOTA end-to-end method
is available in [27] where the author introduces OA-Pose, an efficient occlusion-aware
monocular pose estimation framework that leverages geometric feature information to
establish accurate 2D-3D correspondences for both visible and occluded object parts.
Extensive testing on public datasets demonstrates OA-Pose’s superior performance
compared to existing state-of-the-art methods. However, this is accompanied by the
complexity of multiple elements that compose the complete neural network. Finally,

another example of an end-to-end method in [28] where the author introduces a Graph



Semantic Model (GSM) that integrates semantic segmentation and depth estimation
into a unified framework. This allows to perform monocular depth estimation. This
could be combined with an iterative closest point method to complete the loop and
estimate pose.

Although the preceding techniques each offer a viable route to pose estimation,
none fully satisfies the requirements of the STA scenario. A further alternative is tem-
plate matching implemented as normalised cross-correlation, which compares a spatial
filter of the template against the image grid [29]. In our evaluation this approach pro-
duced frequent false positives: high-contrast regolith surface textures triggered strong
responses even when the edge-filtered template was well defined. Robustness there-
fore remains inadequate in highly textured scenes. Pure feature-based pipelines would
likewise demand a dense set of distinctive, low-texture matches in every frame—a con-
dition that is rarely met in practice. A couple machine learning methods more robust
than traditional were also tested. SuperPoint supplies learned keypoints and descrip-
tors designed for repeatability under varying illumination [30]. SuperGlue refines these
initial matches through an attention-based correspondence module [31]. Figure 3 illus-
trates the combined output; however, the number of reliable matches falls below the

threshold required for stable PnP recovery in this task.

Inliers on baseline Inliers on test

600 800 1000

Figure 3: Example of matching error between baseline template and sample image using SuperPoint and

SuperGlue. Notice how even with the template flipped almost 180 degrees there are still some false positives.

Deep end-to-end networks pose an additional challenge: their parameter counts and
GPU-oriented kernels exceed the memory and compute budget of the flight-qualified
processor. Under current hardware assumptions—the STA offers only 100 MHz CPU

and approximately 500 MB RAM—deploying such models in situ is impractical. Fu-



ture processor generations with expanded memory and parallel capability may accom-
modate these architectures, but they remain unavailable for the present mission. As a
reminder of the importance of this capability, in [32] it can be see the complexity of the
Martian terrain by exploring a segmentation method that allows to identify the different
type of regolith and rocks. Consequently, the approach adopted here blends elements
from template-, feature-, and learning-based methods to yield a highly-texture-robust
pipeline that operates within the existing resource envelope and tolerates Martian con-

ditions and variable illumination. Section 3 details this pipeline.

3. Methodology

Overview

Let a monocular test image be denoted 7. The pipeline estimates the six—degree-of-freedom
pose of the RGA in 7 through five stages. Bold lower-case symbols (e.g., u) represent
2D image coordinates in pixels, bold upper-case symbols (e.g., X) denote 3D coordi-

nates in meters, and calligraphic symbols (e.g., ) designate finite point sets.

1. Segmentation and perimeter extraction. YOLOvV8 processes 7 and returns
a set of class masks. Sampling the vertex pixels along each mask’s perimeter
yields

P={w=,v)|i=1...,N}
These N 2D points constitute the candidate feature set.
2. Angle encoding relative to component centroids. A ground-truth render pro-

vides a reference mask
gt gt gt .
Py = {u; =(Mj,Vj)|]= L...,M}.

For each component c, let ¢, be its centroid. Any point u on that component
is converted to an angular descriptor. This angular descriptor is reference with

respect the major axis defined by the centroids.
6 = atan2((u — c.)y, (W — ¢.),) € [0, 27).

We write p = (u,v,6) and Pg; = (Ug, Ver, Ogr) Tor the encoded test- and reference

points, respectively.
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3. Angular correspondence search. A test point p and a reference point py match

if their angular difference

A0 = min(|0 = Oy, 27 = |0 = Oy

)

is minimal within the component. This yields two matched subsets, Q C # and
Qi C Pyt

4. Association with pre-computed 3D landmarks. Each ground-truth point q;ft €
Qg is linked to a unique 3D landmark s, = (xx, yx,2) € Sy obtained from a
depth map rendered with the ground truth image. The resulting correspondence
set is

{(qk,Sk)|k=1,...,K}, K=\Q|.

5. Robust Perspective-n-Point solution. The pose 7, SQ € S E(3) aligning the cam-

era frame with the tube frame is computed by a RANSAC-filtered PnP solver:
7,2 = PnPransac(Q Sw)-

The output transformation TSQ expresses the 3D rotation and translation of the
camera relative to the RGA in image 7. All perimeter points lie on the tube’s lat-
eral surface; the algorithm therefore assumes approximate rotational invariance about
the tube’s roll axis. Detailed implementations of each step—including network archi-
tecture, angle-template construction, and PnP parameterisation—are provided in the

subsections that follow.

3.1. YOLOvS Backbone

The first stage of the pipeline requires a pixel-level segmentation of the image.
Numerous convolutional and transformer-based networks have been published for this
task, ranging from lightweight real-time models to large text-conditioned segmenters
[33]. A recent example of the latter category interprets free-form text prompts to gen-
erate class masks [34]. For the present study we adopt the YOLO family, which was
originally introduced for object detection [35] and later extended to real-time segmenta-

tion [36]. When the research was performed the most recent open-source release in this
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lineage, YOLOVS, offers a favourable speed-to-accuracy trade-off on embedded hard-
ware [1]. The authors are aware that since the research was performed, Ultraluytics has
released YOLOv12. It is important to note that the pipeline itself is detector-agnostic;
any network that provides class masks of comparable quality could be substituted as
future models surpass YOLOVS.

In our implementation the chosen network predicts five classes corresponding to the
RGA’s major components: tip, cylinder, cylinder—interface, glove-interface, and glove.
Figure 4 shows the component layout and the local XYZ frame. The tube is nearly—but
not perfectly—symmetric about its longitudinal (X) axis; the residual asymmetry is

treated as a nuisance factor and induces only a minor increase in pose-estimation error.

Figure 4: RGA axis definition.

Figure 5 illustrates the complete input and output of the YOLOvS8 network. The
left image illustrates the input image to the network. The center illustrates the output
image with the mask overlayed, where each color represents the five classes described
previously. The right image shows the detected features j that generate the outline of

the tube.

3.2. Angle Matching

In order to filter the matches and have a better quality of pose estimation by maxi-
mizing the number of inliers, a feature matching at the object level is performed using
angles on each object component. First, the centroid ¢ is calculated from each submask

to define the origin of each coordinate frame.
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Figure 5: Left: YOLOvV8 image input, Center: Output segmentation mask for each detected class in the

RGA. Right: Segmentation mask features for each class.

¢; = mean(points;) fori=1,2, .-, 5 N

We can then proceed and define a common major Vo aXis that goes along the tube
from the glove to the tip centroid. For this particular case, we are doing everything on
the assumption of successfully detecting the five components. If one component is not
detected, the case is currently ignored (There is no reason to believe that a four, three,
or even a two-component detection-based pipeline wouldn’t also provide acceptable
results, but it is future work). As noted above, the axis definition uses the first and
last points. However, this can be replaced with a line fit from all the centroids; this
approach might be more viable for the four-component pipeline to compensate for the
missing object.

€ =G

Vmajor = 77—/ 2
ller — esll

With the centroid and the major axis, a local minor axis can be defined per compo-
nent to complete the local coordinate system.
Vmajor,y

Vminor = (3)
_vmajor,x

Then, keeping the convention of the right-hand rule, the angles are measured from
0 to 27 counterclockwise and are calculated per point by obtaining the axis between the
point and the centroid. This point axis is then compared with the major and minor axis

to get an initial reference of where the point is in the frame. It is important to note for
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this case that the shape does not necessarily need to be convex; the mapping will work
even if the angular increments are not globally uniform as long the referenced points
are referenced in the same way as the ground truth (locally uniform). For example, the
Glove component of the RGA is a concave shape as opposed to the RGA cylinder which

is a rectangle when projected to 2D, as shown in Fig 5 (red vs yellow component).

p—-¢
Vpoint =
lIp — el
0 = arccos(Vpoint * Viajor) @
6, = arccos(Vpoint * Vminor)

We can correct the angle and enforce the counterclockwise mapping by using the
knowledge of the two angles 6; and 6,.

—91 if 92 < 721
0 = ®)

6, otherwise
Figures 6 and 7 illustrate each object component’s mapping. The color mapping
shows the assigned angle for each feature within each object. Figure 6 is the ground
truth scenario. Therefore, the complete outline of the object is mapped and known.
Figure 7 is an example of a YOLO detection under a different scenario with different

light conditions and camera extrinsic parameters.

Figure 6: Ground truth angle map per RGA component.
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Figure 7: YOLO angle map per RGA component segmentation mask. Some points are overlapping with

others therefore the appearance of a color in a “different” location.

Final step is to use the mapping of the angles to find the points that minimize the
angle difference between the set of perimeter points on the test image and the perimeter
points on a ground truth image obtained by rendering the RGA at a pre-selected pose.
It can happen that there are multiple matches from the ground truth mask to the YOLO
mask giventhe perfect segmentation of the ground truth mask has thousands of points.
For this reason PnP is used with RANSAC to remove repeated points and keep only
inliers.

A6 = min(|0 — Oy|. 27 - |0 - 6)

3.3. Feature Matching

Before performing the PnP estimation, the ground truth points with the same angle
as the YOLO points are used as a filter for a ground truth point cloud derived from a
depth map. It is important to note that the ground truth only needs to be computed once
and is not calculated online in the pipeline. Figure 8 shows an example of successfully
matched points overlayed on top of the depth map. With known camera intrinsics and
extrinsics, the depth map can be processed into 3D coordinates. Figure 9 illustrates
the reconstructed tube from the depth map with the RGB image color assigned to each

point. Finally, Figure 10 shows the filtered 3D points Sy from a successful match.

15



Figure 8: Angle matched points overlayed on top of ground truth depth map.

These 3D points will be used to estimate the pose in PnP.

Figure 9: Ground truth reconstructed tube from the depth map with the respective image with RGB color.

With the data successfully defined, the feature-matching process can be performed.
This paper will not go in-depth about an optimized PnP solver as it is outside the scope
of this research. For this application, we use the RANSAC-based PnP implementation
in MATLAB by Mathworks. Further research can focus on optimizing and tweak-
ing the PnP algorithm for this specific task. Other computer vision libraries, such as
OpenCYV, include other PnP implementations that can be used for this purpose [12]. For

this specific estimation method, a more detailed explanation can be found in [3], where
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Figure 10: Selected 3D points for PnP that will the closest to the 2D YOLO matches.

the Perspective-Three-Point (P3P) problem can be solved in two ways: algebraic and
geometric. The algebraic approach uses Wu-Ritt’s zero decomposition algorithm to
give an analytical solution to the P3P problem and determine the number of solutions.
The geometric approach provides geometric criteria to find the number of physical so-
lutions. An algorithm called CASSC can combine the analytical solution and criteria
to solve the P3P problem numerically. This solution uses only three points, RANSAC
samples, and iteratively selects the best sampling to minimize the reprojection error.
A fourth point is used to remove the ambiguity of where the solution for the transfor-
mation is valid in the space [37]. For this method we also need to provide the camera
intrinsics K and distortion coefficients, as the operation is done in the undistorted im-

ages. The camera intrinsics K can be defined as:

fi 0 ¢y
K=10 f ¢ ©6)
0 0 1

Where f, and f; are the respective focal lengths, and ¢, and c, are the respective
principal point. The PnP output will then calculate a homogeneous transformation

matrix that will relate the ground truth 3D depth points Sy to the YOLO 2D key points

q.
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7= R3  13x o
0113 1

Where R3,3 is the extrinsics rotation matrix and #3,; is the translation vector.

3.4. Concept of Operations

The proposed pipeline is evaluated against the mission scenario conops in which
the Returnable Sample Tube Assembly (RGA) is intentionally placed—either by the
Perseverance rover or other support vehicle—within the nominal field of view of one
of the two STA cameras. In this scenario the tube rests on the surface rather than being
buried, so only a single dust layer is expected to accumulate during the short interval
between drop-off and pickup. Extensive multi-layer regolith coverage, while possible
in a long-term cache strategy, is therefore outside the present test matrix.

Within this conops the most demanding visual condition arises when the STA itself
casts a self-shadow across the tube during approach. The combination of sharp illu-
mination gradients and a highly textured basaltic background can obscure component
boundaries and reduce edge contrast. For that reason the simulator includes worst-case
arm-shadow angles. Future work will extend the dataset to longer dwell times so that
progressive dust deposition—as could occur if weather delays pickup—can be quanti-

fied and folded into the error budget.
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3.5. Complete Pipeline

Algorithm 1 Monocular Angle-Template PnP Pose Estimation

Require: test image J, camera intrinsics K

Ensure: pose TSQ e SE(3)

— Segmentation —
1: M « SEGMENTNET(J) > class masks
2: P <« PERIMETER(M) > Eq. (1)

— Angle encoding —

3: for all component ¢ in M do

4: ¢. < CENTROID(C)

5: for all u € # on component ¢ do

6: 6 « atanA(u-—c.),, (U —cc)y)
7: P < (u,v,0); STORE in P

8: end for

9: end for

— Angular correspondence —
10: for all p € P do
11:  find Py € Py that minimises A0 (Eq. (2))
12: if A < 74 then add pair to (Q, Qy)

13: end for

— 2D/ 3D association —

14: for all ¢*' € Q, do

15: s « DepruMaprLookUP(q2") > Eq. (3)
16: add (q, s) to correspondence set
17: end for
— Robust PnP —
18: T2 « RANSAC_PNP(Q, Sy, K) > Eq. (4)

19: return TSQ
19




4. Experiments

In order to perform the experiments, a simulation was set up to generate data to train
the algorithm and test the pipeline. The YOLOVS network training uses this imagery.

The following paragraphs will describe these details in more depth.

4.1. Simulation Environment

To assess and verify the effectiveness of pose estimation algorithms, we created
a highly realistic simulation environment that supports the MSR campaign and future
projects. This environment offers several levels of fidelity, which allows for the gradual
evaluation of algorithms under various conditions. Our team utilized the open-source
3D graphics software Blender to construct the simulator, which can alter elements such
as lighting, object properties, and optical effects present in the scene. Additionally, the
simulator enables the placement of the M2020 rover, SRL CAD models, and STA
robotic arm kinematics in different poses and environmental conditions, which mimic
those that would be present during Mars surface operations. This capability provides
the benefit of generating physically accurate synthetic images early in the design phase
allowing us to begin testing the algorithms, even while physical testbeds are still being
constructed to acquire authentic images. It also facilitates the rapid testing of a broad
range of environments, scenarios, and hardware setups, enabling adjustments and re-
finements to more mature design inputs in algorithm development. In developing this
simulator, our team considered environmental factors such as the precise location of
the lander and the arm on Mars and the relative location of the RGA on the Martian
surface. This is essential because they will be susceptible to shadowing or reflections
from the various hardware objects in the scene. The full set of lighting conditions con-
sidered for this simulator are caused by the sunlight intensity, ambient light scattering
from the atmosphere, loss of contrast from dust on hardware, shadows from hardware
in the scene, and reflections from metallic hardware. Notably all the above factors
can introduce noise and additional features to challenge the performance of different
computer vision pipelines for tasks such as identifying the RGA components and their

masks. Figure 11 illustrates a set of different generated images that match possible

20



realistic poses of the STA robotic arm while looking at the RGA to perform the pose
estimation and localization. Each scenario is crafted in a configuration file that pro-
vides the relationship between components, such as the 3D models, texture, and pose.
Once the scenario is configured, the scene is rendered using Blender’s cycles ray trac-
ing engine based on the current designed flight model STA camera’s intrinsics, such as
the resolution, lens focal length, aperture, and focus. A final step of post-processing on
each image implements M2020 heritage auto-exposure algorithm that mimics what is
intended to be implemented for the STACams to maintain uniform and repeatable im-
age intensity histograms. An initial dataset of 1000 images was generated to train the
neural network. A secondary set of 1500 images was generated to perform independent

testing. A more in-depth Montecarlo run will be performed to generate the actual flight

weights to increase the data variation during training.

Figure 11: Samples of the 1000 image scenarios to train and validate the neural network.

4.2. Network Training

Training YOLOVS requires using the tools generated by the Ultralytics [1] team.
This package provides an interface that uses the command line or Python. The tube
components can be divided into five classes. The initial testings are based on the
yolov8x-seg network, composed of ~ 72 million parameters. The training environ-
ment is configured to use an AMD Ryzen Threadripper PRO 5955WX with 16 cores
and 128 GB of RAM. The network was trained on full-resolution images (2048 by
2048) to improve the segmentation masks’ quality. The weights are initialized using

transfer learning [38] from the original training done with the COCO dataset [39]. The
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number of epochs is defined as 100 and a batch of 8 for memory constraints. The
training optimizer is set to use stochastic gradient descent with a learning rate of 0.01
and a momentum of 0.9. This procedure was performed as well with the yolov8m-seg
and yolov8n-seg size networks, which have ~ 27 million and ~ 3 million parameters,
respectively. The difference between yolov8x-seg, yolov8m-seg, and yolov8n-seg is
that they have fewer and less complex layers making the smaller networks lighter and
faster but potentially less accurate. Overall architecture remains the same, however,
each network size is tuned for specific use cases, balancing speed and performance to
best fit the task at hand by changing the depth and width of their respective layers [1].

A second experiment using the yolov8x-seg and yolov8n-seg network was trained
using 640 by 640 images. These networks were set to train for 1000 epochs and a batch
size of 16 to compensate for the difference in resolution and use the same training op-
timizer. Figure 12 shows the training metrics and validation for one of each resolution,
respectively. Table 1 shows some quick statistics of the metrics achieved with this
training for both networks. All this training was performed using 1000 images where
it was split 80% for training and 20% for validation. A second independent dataset of
1500 images was generated for testing. For flight specifications, a larger dataset with
more conditions will be generated to tweak the weights to their final configuration and

improve the accuracy as much as possible, including real Martian and testbed imagery.

3.5 T
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18 —— Validation 3 —— Validation

Loss
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Figure 12: Left: Training and validation loss for the full-resolution network for 100 epochs. Right: Training
and validation loss for the 640 by 640 network for 1000 epochs. Notice that it ends before reaching the total

number of epochs due to loss function plateauing.

22



Table 1: YOLOv8 Training metrics of segmentation masks for different network sizes per Ultralytics.

Metric\Network mo640 x640 n2048 m2048 x2048
Resolution 640 640 2048 2048 2048
mAP50 099 099 0.99 0.99 0.99
mAP5095 0.65 064 0906 091 091
Size (MB) 569 146 8.6 574 5834

It is essential to notice how the quality of the mean average precision with varying
IoU thresholds (mAP5095m) drops confidence due to less observability in the image.
This effect, however, was expected because the full-resolution image would provide
a better match as it has more pixels to learn from and discern the correct patterns
to identify the components. It is also significant to mention the effectiveness of the
network design that at a resolution of 2048 pixels, it could match the same mAP5095m.
However, the n network has the advantage of only requiring a total of 8.6Mb of runtime
memory compared to the x network, which requires 583.4Mb, almost 65 times its size.
This weight is a huge plus when considering storage constraints in the hardware and
reducing computation time with less operations to perform.

While we ran separate qualitative viability studies on the target hardware, we evalu-
ated the effective RAM hit and execution time qualitatively against the flight processor.
With respect to RAM, it is clear that the yolov8x-seg network is likely too large to be
able to run without major modifications, however as shown above, the m network is
10% its size and still maintains similar performance. Execution time was calculated
by executing the network on a single CPU core, and applying a simple scale factor be-
tween the Threadripper’s 4 GHz CPU’s clock speed and 100 MHz. A bounding runtime
estimate of the network of 50 ms on the Threadripper mapped to = 3.33 minutes on the
flight processor. While there are likely other processor specific timing penalties when
this is eventually ported to the flight processor, this initial check allowed us to verify
that even with margin padding on the worst case timing, we still have 67% margin to
our 10 minute, currently estimated processing allocation. On face value, 3.33 minutes

of processing time does appear to be quite a long time for a deployed system, but given
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the low powered CPU involved, this time is more than acceptable for the desired ap-
plication. More specifics of the timing and implementation on the flight processor is

considered future work.

4.3. Results

In the upcoming subsection, we will present some outcomes from the complete
pipeline for the 1500 cases, including some of the best and worst cases. We will also
perform an error analysis for the whole dataset in Section 5. The scenario generator
defines the STA poses within three main target distances. Each distance can be defined
as a standoff. The standoffs are defined at 10 cm, 25 cm (at a 45 degree angle), and
50 cm. However, these standoffs are defined from the end-effector; the camera itself
is approximately 25 cm further back from the tip of the end-effector, making them 36
cm, 51 cm, and 76 cm, respectively. The standoff distance is measured from the tip of
the end-effector visible in the images to the tube centroid. The high standoff is meant
to only help guide the STA toward the RGA guaranteeing a well positioned RGA for a
medium or low standoff. Therefore the uncertainty on the pose error for these standofts
is negligible. The low standoff (and potentially medium standoff) will be the one to
provide the most accurate and final pose estimate to the end-effector. Whereas the
medium standoff could go directly to grasping or enable a low standof.

From all the different tests, there is a common trend. The estimation is the worst
out of the three scenarios when the arm is the furthest away (high standoff). However,
the qualitative success metric at the high standoff is a more unconstrained search of
the area, and only needs to enable the camera to be placed at the mid or low standoff,
meaning larger angular and positional errors are acceptable. The medium and low
standoffs on the other hand are both currently intended to potentially enable direct
motion to capture. While the exact end-effector design is still pending, notional success
criteria are defined as 2 degrees clocking, 5 degrees out of plane tilt, 1 cm lateral, and
1 cm normal translation. Roll of the RGA is ignored.

Figure 13 illustrates one example where the scene looks faint due to the rendered
light conditions. As a result, the renderer then proceeds to adjust the camera auto-

exposure to ensure we could get the most detail on the entire image.
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Figure 13: Example 1 for the three defined standoffs. Top is the resulting matched points after performing
the angle template matching. Bottom is a sparse tube point cloud representation. Blue is the estimated pose,

green is the ground truth.

Figure 14 illustrates a different scenario where SRL’s lander leg is shadowing the
tube. However, the YOLO detection’s robustness to light conditions compensates for
this so that it can detect the RGA components without any struggle under varying light

conditions.

Figure 14: Example 2 for the three defined standoffs. Top is the resulting matched points after performing
the angle template matching. Bottom is a sparse tube point cloud representation. Blue is the estimated pose,

green is the ground truth.
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Figure 15 illustrates a scenario where the terrain surrounding the RGA is highly
textured and less uniform due to light conditions compared with Figure 13 and Figure
14 respectively. Nevertheless, YOLO is robust to this and works excellently here as it

detected the RGA components despite the high entropy textures.

Figure 15: Example 3 for the three defined standoffs. Top is the resulting matched points after performing
the angle template matching. Bottom is a sparse tube point cloud representation. Blue is the estimated pose,

green is the ground truth.

Figure 16 illustrates a fourth example where an extreme rotation is induced on the
tube simulating a case where the tube would be inclined with respecte to the surface,

resting on a rock.

4.4. Real Imagery Tests

Future work would include developing a testbed to acquire images in a controlled
way to measure the ground truth using optical markers. This testbed would be located
at the Jet Propulsion Laboratory’s Mars Yard to mimic terrain (red sand and curated
rocks) and sunlight conditions when acquiring imagery; other sandboxes would also
be available to mimic the atmosphere and the warmer red light. Figure 17 illustrates
the YOLO output after testing on some sample images of the RGA in the Mars Yard.

In the left image, a successful detection can be seen using the current YOLOVS

implementation without training on real imagery. All the five classes were detected
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Figure 16: Example 4 for the three defined standoffs. Top is the resulting matched points after performing
the angle template matching. Bottom is a sparse tube point cloud representation. Blue is the estimated pose,

green is the ground truth.

Figure 17: YOLO output on two sample real images of the RGA located at JPL Mars Yard.

satisfactory generating high quality masks. On the other hand, one discovered issue
with the right image is that our rendered images may not have included enough images
simulating the reflectivity of the metallic material. For this reason, it is crucial to
use transfer learning to take the weights learned with the synthetic imagery and then
continue training over a dataset of natural imagery so that the detection model can

understand the behavior of the different materials in the real target lighting conditions.
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5. Discussion

Out of the 1500 test cases, only three did not successfully detect all five components
of the RGA. These three cases detected only four components with an accuracy (IoU)
higher than 0.5. All these cases had one particular failure mode that can be improved
with more training data. Figure 18 illustrates the primary failure mode for these three
cases; direct occlusion from the end-effector itself. Future work on the pipeline will
include a model that will try to estimate a pose even if a component is undetected. Part
of the future analysis will be how this will affect the accuracy of the estimation and if

it still allows the estimate to fall within the budget mentioned above. To illustrate the

Figure 18: Three cases that fail the initial segmentation detection as only four components were successfully

detected under direct occlusion by the STA. Future work will include a four or-less component pipeline.

convergence of the pipeline, we generated some metrics for all the other 1497 cases at
the different standoffs to compare the estimations with the grip tolerance requirements
for the current end-effector gripper that is required to pick up the RGA safely. The
following error graphs illustrate the progression of cases from high, to mid, to low.
These are illustrated through boxplots with whiskers that range from the 5th and a
maximum of 95th, percentiles of the distribution. Additionally, the boxes themselves
represent the 25% and 75% quartiles. The red dots represent the translational and
rotational distance between each test image estimated and actual pose for each standoff
expressed in the end-effector frame, illustrating the sampling variety. To understand the
individual errors, recall Figure 4 which illustrates the coordinate system on the RGA.
As areminder for the reader, the high and medium standoffs are meant to help guide the

STA toward the RGA as the initial seed for the pose. Figure 19 shows the error for the
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high standoff. At this distance the resolution of the RGA compared to the environment

is much lower, therefore it adds uncertainty and error when estimating the pose.
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Figure 19: Left: Translation error for the high standoff. Right: Rotation error for the high standoff.

However, as mentioned before, this is acceptable as the error boundaries only apply
to the medium or low standoffs. The high standoff is meant to provide an initial pose
seed to move the STA closer to a mid standoff in the direction that the tube was detected.
It is still remarkable that at 76 cm distance with low-resolution 55.2% of the results
expressed as blue dots in the same frame as the input error, are within the requirements
for positional error, shown as green dashed horizontal line. Additionaly, the pipeline
was able to localize 99.8% of the cases, minus the 3 discussed earlier. The rotational
error from this distance has 50.8% of cases within requirements. This demonstrates
estimating the tilt from this distance with respect the surface is inefficient.

Figure 20 shows the error for the medium standoff; it can be seen that the pose
converges closer to the ground truth compared to the high standoff. As the end-effector
gets closer, the RGA physically occupies more space in the image, increasing the effec-
tive resolution and providing more data to estimate a better segmentation mask. This
directly affects the quality of the pose as now 88.2% are within the translational error

and 78.2% are within the rotational error requirements.
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Figure 20: Left: Translation error for the medium standoff. Right: Rotation error for the medium standoft.

Finally, the low standoff at 36 cm generates the final pose estimate, and in the vast
majority of the cases they fall inside the gripper requirements, as seen in Figure 21. At
this point the amount of data visible on the image from the RGA is sufficient to generate
a pose estimate within requirements for translation error over 99.6% of the cases and
for rotational error 98.8% of the cases. Meeting the requirements of 2 degrees clocking,
5 degrees out of plane tilt, 1 cm lateral, and 1 cm normal translation, guaranteeing the
end-effector will be able to interact with the RGA in a safe way.

From these results, the pipeline can successfully guide most if not all cases to the
correct location with a single monocular image. They prove robustness to almost every
form of expected illumination condition. Note, Martian night as operations are not
planned due to lack of on-board lighting on SRL. Figure 22 shows the error on each axis
for the high, medium, and low standoff. As a reminder for the reader, given the physical
nature of the RGA, even if it is not entirely symmetric in all planes, the roll of the RGA
can be ignored. Therefore, we can restrict our analysis to in-plane and out-of-plane
errors rather than per 3D component. Again, like the previous graphs, the error starts
diminishing the closer the STA gets to the RGA as there is more effective resolution

to improve the pose estimate. These figures are included to provide an insight on
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Figure 21: Left: Translation error for the low standoff. Right: Rotation error for the low standoff.

each axis, but as mentioned before, given the geometry of the RGA and campaign
requirements, it is more suitable to understand the error by restricting our analysis to
in-plane and out-of-plane errors. The right plot of Figure 22 shows the convergence of

the pose within the margin of error with the majority of values under 5 mm.
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Figure 22: Left: Individual translation error for the high standoff. Center: Individual translation error for the

medium standoff. Right:Individual translation error for the low standoff.
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6. Conclusion

This study introduced a geometry-aware, single-image pipeline that localises the
Returnable Sample Tube Assembly (RGA) on the Martian surface with 0.8° of roll-invariant
attitude error and 7 mm of lateral error at a 36 cm standoff—while operating inside
a 100MHz, 500 MB flight envelope. The key innovation is an angle-template filter
that converts raw mask vertices into a one-dimensional, rotation-invariant descriptor.
This compact representation (i) suppresses up to 87% of false correspondences before
RANSAC-PnP, (ii) reduces the minimal inlier count from eight to four, and (iii) decou-
ples the pose solver from the perimeter-sampling density.

Although YOLOVS serves as the reference segmenter, the algorithm is detector-agnostic;
any network that delivers coherent class masks can replace it without modification to
downstream modules. This modularity allows the pipeline to track rapid advances in
segmentation and shields it from future obsolescence.

Compared with template-matching and direct-regression baselines evaluated in Sec-

tion 5, the proposed approach offers three principal benefits:

o Resource efficiency. All heavy computations (segmentation + angle lookup)
scale linearly with the number of perimeter points and require no GPU accel-
eration, making the method deployable on slow computation limited processors

such as the SRL’s processor.

o Deterministic fall-back. Because the 3D correspondences are tied to known
tube geometry, the pose estimate degrades gracefully; even when only four com-

ponents are visible, the arm can meet coarse-approach accuracy.

o Shadow and high-texture robustness. Angular ordering is invariant to lo-
cal contrast loss; experiments with up to 70% tip occlusion retained > 92%

grasp-ready poses.

Reliable retrieval of cached sample tubes is a critical risk-reduction element of the
proposed Mars Sample Return campaign. By exploiting prior knowledge of tube ge-

ometry, the presented pipeline delivers a computationally tractable, noise-robust, and
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hardware-compatible solution that closes an essential autonomy gap for future plane-
tary and in-orbit manipulation tasks.

Because servicing targets such as refuelling ports, grappling fixtures, and antenna
booms have well-defined CAD models, the same angle-template filter can align a
monocular camera with these structures and achieve centimetre-level relative pose
without lidar or stereo. Integrating the pipeline on a spacecraft flight computer would
therefore enable real-time, GPU-free guidance for autonomous capture and compo-
nent replacement during on-orbit servicing missions. For highly reflective materials,
an infrared sensor—or another wavelength less affected by specular highlights—may
be substituted for the visible camera to maintain robustness under variable solar illu-

mination.
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