
Abstract

Detecting negative obstacles (ditches, potholes, and
other depressions) is one of the most difficult problems
in perception for autonomous, off-road navigation. Past
work has largely relied on range imagery, because that is
based on the geometry of the obstacle, is largely insensi-
tive to illumination variables, and because there have not
been other reliable alternatives. However, the visible
aspect of negative obstacles shrinks rapidly with range,
making them impossible to detect in time to avoid them at
high speed. To relieve this problem, we show that the
interiors of negative obstacles generally remain warmer
than the surrounding terrain throughout the night, mak-
ing thermal signature a stable property for night-time
negative obstacle detection. Experimental results to date
have achieved detection distances 45% greater by using
thermal signature than by using range data alone. Ther-
mal signature is the first known observable with poten-
tial to reveal a deep negative obstacle without actually
seeing far into it. Modeling solar illumination has poten-
tial to extend the usefulness of thermal signature through
daylight hours.

1. Introduction
Autonomous, unmanned ground vehicles (UGVs) are

rapidly approaching practicality for a number of applica-
tions. UGV perception technology also has application in
manned vehicles as a driver aid. A key open problem for
UGV perception is detecting negative obstacles. At pre-
sent, these are essentially impossible for UGV perception
systems to detect in time to avoid them at driving speeds
above a few kilometers per hour (kph). In this paper, we
show that negative obstacles tend to be warmer than the
surrounding terrain for most of the night; we also show
that this enables detecting negative obstacles in condi-
tions for which other approaches fail. UGVs for military
applications are likely to carry thermal infrared cameras
for other purposes, such as perception at night and
through atmospheric obscurants. Commercial passenger
cars are also now available with thermal infrared cameras
as driver aids for night operation. Thus, thermal infrared
signature has potential to revolutionize negative obstacle
detection for both manned and unmanned vehicles, using
sensors that are already in the sensor suite of both classes
of vehicles for other purposes.

Most prior research on negative obstacle detection has
been done by the small community working on autono-
mous off-road navigation. Past work has relied primarily
on geometric analysis of range data [1,2], because these
obstacles are largely defined by their geometry and be-
cause the most obvious alternative, intensity discontinui-
ties, was considered highly dependent on illumination
conditions and subject to false alarms. Informal discus-
sion of other potential sensors for this problem, such as
radar or polarization, has not, to our knowledge, led to
successful or published results. The difficulty of seeing
negative obstacles from ground level has prompted recent
work under the DARPA Perceptor program to detect them
from the air [3].

In section 2, we review the basic geometry of negative
obstacle detection to show analytically what makes this
such a hard problem for ground-based sensors. In a nut-
shell, considering the lookahead distance needed for safe
driving, the angular resolution needed to see a negative
obstacle grows with the fourth power of velocity; even
then, there is no way to know how deep a hole is from
the geometry of the visible portion. Section 3 illustrates
the results and limitations to date of negative obstacle
detection with stereo vision-based range data. We intro-
duce a simple heat transfer model in section 4 that shows
that the interior of negative obstacles will tend to be
warmer than the surrounding terrain all night long. Dur-
ing the day, the interiors can be warmer or cooler than
their surrounds, depending on sky conditions and sun
position. Section 5 presents thermal imagery of natural
and man-made negative obstacles that confirm the conclu-
sions of the heat transfer model. In section 6, we show
initial results of simple algorithms that combine geomet-
ric and thermal cues to achieve superior performance than
possible with geometric cues alone. Section 7 summarizes
our conclusions and near-term plans for additional work
in this area.

2. Basic Geometry of Obstacle Detection
Figures 2-1 and 2-2 illustrate the geometry of positive

and negative obstacle detection, respectively; as we will
see, detecting negative obstacles is much more difficult
than positive obstacles. A simple way to characterize ob-
stacle detectability is in terms of the angle 

† 

q  the obstacle
subtends at the sensor. When the range R to the obstacle
is large relative to the height H of the sensor above the
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ground, so that angles 

† 

a  and 

† 

q  are fairly small, small
angle approximations for trigonometric functions yield

† 

a ª (H - h) /R , 

† 

a +q p ª H /R , and therefore

† 

q p ª
h
R

where h is the height of the obstacle.
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Figure 2-1. Geometry of positive obstacle detection.
For negative obstacles of width w, by the small angle

approximation the depression angles are 

† 

a ª H /(R + w)
and 

† 

a +qn ª (H + h) /(R + w) . By similar triangles,

† 

h = Hw /R . Combining these equations to solve for 

† 

qn
and eliminate h, we get:

† 

qn ª
Hw

R(R + w)
                          (1)

Since obstacle widths w  can be less than 0.5 m and
ranges R of interest are often greater than 5 m, the de-
nominator will be dominated by the 

† 

R2 term. Thus, the
angle subtended by a positive obstacle decreases by 

† 

1/R
as the range increases, whereas the angle subtended by a
negative obstacle decreases by 

† 

1/R2.
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Figure 2-2. Geometry of negative obstacle detection.
The last step we need is to relate the required lookahead

distance R to the vehicle velocity v. To have room to stop
before hitting an obstacle, it is well known [4] that the
lookahead distance needs to be at least:

† 

R =
v 2

2mg
+ vTr + B                      (2)

where 

† 

m  is the coefficient of static friction between the
wheels and the ground, g is gravitational acceleration, 

† 

Tr
is the total reaction time, and B is a buffer distance used
for safety. For illustration, typical values of these parame-
ters for off-road driving are around 

† 

m = 0.65, 

† 

Tr = 0.25,

† 

B = 2, and of course 

† 

g = 9.8 . For these values, the quad-
ratic term will begin to dominate when 

† 

v > 3.2 m/s
(

† 

R > 3.6  m), which is about 11.5 kph (7 mph). Thus,

above this speed, 

† 

q p  will be dominated by 

† 

1/v 2  and 

† 

qn

by 

† 

1/v 4 . This makes it very clear that negative obstacle
detection is harder than positive obstacle detection;
moreover, seeing the visible portion of a negative obstacle
tells very little about its depth, so there is great potential
for false alarms and missed detections.

3.  Negative Obstacle Detection with Range
Data

We will now show how negative obstacles typically
appear in real range data, in this case from stereo vision.
We will also describe an algorithm we use to detect them
with range data and show the performance that can be
expected with real data. Figure 3-1 shows an intensity
image of a man-made trench dug to evaluate negative ob-
stacle detection at Aberdeen Proving Grounds (APG) in
1997. This happens to be a thermal infrared image, taken
with a cooled camera operating in the 3-5 

† 

mm band. The
image was taken in the late afternoon, after there had been
sun on the visible side of the trench for several hours;
note how bright it is relative to the surrounding terrain.
The figure also shows range imagery from a stereo pair of
these cameras. Note that there is an irregular band with no
range data along the leading edge of the trench; this is
typical, though sometimes there will be “mixed pixels” of
range data that span the negative obstacle, filling in the
range image.

 
Figure 3-1. Left: thermal image of a trench 0.6 m wide
viewed from 5.5 m away at a camera height of 1.0 m.
Right: false color range image from stereo vision; yellow
is closest, violet furthest, and black represents no data.
Cross-hairs in both images are for reference to later
figures. The red overlay on the intensity image shows
detection of the leading edge of the trench.

Figure 3-2 shows the range data projected as an eleva-
tion plot; each dot shows where one pixel of the range
image projects on the ground plane. Height is shown in
false color, but since the terrain was quite flat there is
little variation in color in this figure. The negative obsta-
cle clearly shows up as a gap in the elevation data. The
bright band on the far (right) side of the trench is caused



by multiple range pixels from the vertical, interior wall of
the trench projecting to roughly the same place in the
elevation plot.

Figure 3-2. Elevation plot of the range data, seen from
above. The camera was on the left, looking right. Ma-
genta overlay shows detection of the leading edge of the
trench. The cross-hairs mark the row and column marked
by cross-hairs in figure 3-1.

Figure 3-3 shows an elevation profile of the column
marked by the cross-hair in figure 3-1. The region of near-
vertical pixels on the far side of the trench (the “upslope”)
corresponds to the visible portion labelled h in figure 2-2.
Negative obstacle detection algorithms based on range
data generally exploit the gap in the data at the obstacle,
the length and slope of the upslope, and the angle be-
tween the trend line of the terrain in front of the obstacle
and the “downslope” (fictitious line marked red in figure
3-3) from the leading edge of the obstacle to the bottom
of the upslope portion. If these measurements are all con-
sistent with negative obstacle geometry as shown in fig-
ure 2-2, the pixels immediately bordering the gap are
marked as a potential negative obstacle. This has to be
“potential”, since all that is known about its depth is the
length of the upslope, or h as shown in figure 2-2.

Figure 3-3. Elevation profile for the column marked by
the cross-hair in figure 3-1, showing height vs. range,
with the height axis exaggerated. The profile crosses the
trench at the gap. The near-vertical portion on the far
(right) side of the gap is the vertical interior of the
trench; this segment is 13 cm tall.This profile has no
mixed pixels, but if it did they would fall on the red line,
filling in the gap across the obstacle.

In the previous section, we characterized the detectabil-
ity of an obstacle by the vertical angle it subtends at the
sensor. In practice, it is useful to translate that into the
number of pixels subtended by the obstacle. In a large set
of negative obstacle imagery taken at APG, we found that
negative obstacles had to subtend at least 6 pixels for
reliable detection. The stereo algorithm we used in those
experiments had a correlation window 7 pixels high.
This agrees with other qualitative observations we have
made in the past that, with stereo, obstacles must be
larger than the correlation window to be reliably detected;

otherwise, they get too blurred by the low-pass filtering
and other artifacts introduced by the correlation window.

At 0.6 m wide, the trench shown in this section is large
enough to be an obstacle for many wheeled vehicles of
interest. The cameras used in this data collection had a
vertical angular resolution of 2.39 mrad. When the 6-pixel
detection rule is applied to a more complicated version of
equation (1) that does not use small angle approxima-
tions, we get a prediction that this obstacle could not be
reliably detected much beyond 6 m. Taking this as the
lookahead distance requirement for equation (2) and using
the typical parameter values we gave earlier, this implies a
maximum safe driving speed of about 5.7 m/s (20.6 kph
or 12.9 mph). Even this is optimistic, since the data set
used to obtain our 6-pixel rule was based on ideal condi-
tions involving vertical-walled trenches cut in level
ground with negligible vegetation.

4. Simple Heat Transfer Analysis for Nega-
tive Obstacles

Given the limitations of negative obstacle detection
with range data alone, having another observable feature
that would either confirm detection or enable detection at
greater range would very valuable. The bright interior of
the trench in the thermal image in figure 3-1 gives a hint
that temperature might be such a feature. Intuitively,
negative obstacles are cavities that we might expect to
retain heat. Hence, when the sun is not present, intuition
suggests that open terrain might cool more quickly than
the interiors of negative obstacles. This leads to the hy-
pothesis that negative obstacles might be warmer than
surrounding terrain most of the night. This by itself
would be of significant value; by modelling the solar
illumination during the day, it might be possible to push
the usefulness of the temperature signature through much
of the day. In this paper, we focus on confirming the in-
tuition for night observations. The balance of this section
gives a simple heat transfer analysis that supports the
intuition above; section 5 confirms the analysis with real
imagery.

The mechanisms of heat transfer are radiation, convec-
tion, and conduction [5]. In addition, evapotranspiration
can significantly affect heating and cooling rates of vege-
tation and damp ground [6]. To date, we have only mod-
elled the first three factors; it seems likely that they will
dominate for holes that have existed for some time, hence
dried out. This is consistent with our experimental results
to date.

We will present the intuition behind our analysis before
delving into the equations. Radiative heat transfer occurs
when a surface exchanges energy by thermal emission and
absorption with other surfaces “visible” to it in the hemi-
sphere around it. Horizontal ground surfaces that are not
overhung by other structures exchange heat with the sky
over the full 2p  steradians above them. On the other
hand, the interior of a negative obstacle exchanges heat
with the sky over only about half of the hemisphere and



with the other sides of the hole over the other half of the
hemisphere. Since the sky will generally be colder than
the ground, this means that open terrain will tend to cool
faster than the interior of a negative obstacle. In still air,
radiative transfer is the dominant mode of heat transfer
[6].

Convective heat transfer occurs when air motion carries
away heat that is conducted from the surface into the im-
mediately adjacent air.  The rate of heat transfer will de-
pend on the rate of air motion. In general, we expect that
there will be more air motion over the level ground than
inside negative obstacles; heuristically, then, it is likely
that convection will tend to cool open terrain faster than
the interior of negative obstacles.

Conduction cools the ground surface by transferring
heat into the subsurface of the terrain. Given the geometry
of a negative obstacle, it is not immediately obvious how
the effects of conduction will differ between open terrain
and the interior of a negative obstacle. Basic considera-
tions of heat flow rate for soils suggest that conduction
has the smallest effect on the rate of surface cooling, so
that whatever the relative effects on open terrain versus the
interior of a negative obstacle, they are likely to be domi-
nated by radiation and convection. Therefore, we expect
that radiation and convection will work together to cool
the open terrain faster than the interior of a negative ob-
stacle, and that the effect of conduction will be small and
unimportant in comparison.

For this initial study, we need enough of a physical
model to provide a qualitative comparison of heat flux for
these three heat transfer mechanisms, but we do not need
accurate, quantitative predictions of actual temperature
profiles. Therefore, very simple mathematical modelling
will suffice to validate the intuition outlined above; ex-
perimental confirmation with real imagery taken over a 24
hour period will then confirm both the intuition and the
theory.

4.1. Radiative Transfer
We will approximate the model for heat exchange be-

tween open terrain and the sky as two infinite, parallel
planes, in which case the net heat flow is

qt = e s ( Ts
4 – Tsky

4 )

where qt is in W/m2, e is the emissivity of the soil, Ts is
the soil temperature (in °K), Tsky is the effective sky tem-
perature, and s = 5.67 x 10-8 W/m2K4 is the Stefan-
Boltzmann constant. A nominal value of soil emissivity
is e = 0.9. The effective sky temperature ranges from a
low of 230°K under cold, clear sky conditions to a high
of approximately 285°K under warm, cloudy conditions
[5]. If we take the warm end of this spectrum (Tsky =
285°K) and let the soil temperature be Ts = 300°K, the
heat flux is 77 W/m2.

For the interior of a negative obstacle, consider an ide-
alized obstacle represented by a trench with vertical walls.
A small surface element near the top of the wall will “see”
the sky in half of its hemisphere and the inside of the

trench with the other half. It is easy to show that the net
heat flux out of the surface element will be

qn = 0.5 e s ( Ts1
4 – Tsky

4 ) + 0.5 e s ( Ts1
4 – Ts2

4 )

where Ts1 and Ts2 represent the temperatures of the near
and far sides of the trench. From our own measurements,
the temperature difference between opposite sides of a half
meter wide trench are only a few degrees; therefore, qn

will be close to qt/2.  That is, the heat flux from the walls
of the negative obstacle is about half of that from the sur-
rounding terrain. When the walls of the obstacle are not
vertical, the contrast will be less.

4.2. Convective Transfer
In general, modelling convective cooling can be quite

complex; however, to get an initial, qualitative assess-
ment we can use the steady state form of Newton’s law of
cooling with crude estimates of the convection coefficient
[7]:

q = h ( Ts – Ta )

where h is the convection coefficient in W/m2K, Ts is the
soil temperature, and Ta is the air temperature (in °K). h
depends weakly on the temperature difference and the
characteristic length of the surface the air is moving over,
as well as on the nature of the air flow over the surface.
From [7], for natural convection over a 0.3 m vertical
wall in air (eg. inside of a negative obstacle), h is in the
range 2 to 4, whereas for forced convection over a 1 m flat
plate (eg. strong wind over open terrain) h is at least an
order of magnitude larger. Using the value h = 2 and as-
suming a temperature difference of 10°C, we get q = 20
W/m2 as an order of magnitude estimate for the heat flux
due to convection inside a negative obstacle. For open
terrain, the heat flux due to convection will be entirely
dependent on wind speed, but we can safely expect it to
be at least as large as inside the negative obstacle. In any
case, the values are the same order of magnitude as our
earlier estimates for radiative heat transfer.

4.3. Conductive Transfer
The basic heat flow relation for one-dimensional, steady

state conduction is

q = - k  dT/dx

where k is the thermal conductivity (W/m°K) and dT/dx is
the temperature gradient with soil depth (°K/m). For soil,
k ≈ 0.5; for sand, k ≈ 0.25 [5]. dT/dx will of course vary
over the diurnal cycle due to the periodic solar heating.
The remote sensing community has created models of
temperature versus depth under these conditions [8],
which could be used to find limits for dT/dx. We have
not yet undertaken that derivation, but an adequate bound
on dT/dx for our purposes can be estimated from model-
ling results presented in [8]. These show surface diurnal
temperature variations ranging between 20°C and 50°C
and show that effects of the diurnal variation only propa-
gate about one meter into the ground. Using 35°C for the



daily surface temperature variation and approximating the
daily maximum of dT/dx as half that value, then the
maximum value for q is O(10) W/m2. It will be less than
that for much of the night, because dT/dx will be less.
Moreover, we are interested in the difference in conductive
cooling of the open terrain versus the interior of a nega-
tive obstacle. Our measurements show temperature differ-
ences between the inside of a trench and surrounding ter-
rain of less than 5°C; this suggests a small difference in
dT/dx, hence also a small difference in q, between the two
locations. Thus, it appears that conductive effects on the
temperature difference will be dominated by radiative and
convective effects.

We conclude that radiative and convective cooling will
both cause the interior of negative obstacles to cool more
slowly than open terrain. The effect of conduction on the
relative rates of cooling will be minor in comparison.
Thus, following some transitional period after sunset, the
interior of negative obstacles should be warmer than the
surrounding terrain all night long, hence amenable to de-
tection with thermal imagery.

5. Experimental Validation of Heat Transfer
Model

We have used several data sets to confirm the model of
section 4:

• Images taken through about half the night of a
construction trench and man-made pothole in
soil around JPL;

•  Images taken over a 24-hour period from
north, south, east, and west viewing directions
of an L-shaped, man-made trench cut in soil
by collaborators at SAIC in Denver;

•  Images taken at various times of natural and
man-made negative obstacles at Fort Polk,
Louisiana.

All images were taken with cooled, 3-5 mm thermal
cameras. Figure 5-1 illustrates results with the first data
set taken at JPL. The trench was 0.5 to 1 m wide and
over 1 m deep. Both sides and the bottom are clearly
warmer than the surrounding ground surface; this suggests
that thermal signature may be useful for both ground-level
and airborne imagery. The pothole was about 0.4 m wide
and deep. Note that open spaces under the construction
debris are also warm in these images. The sky was clear.

To confirm these observations more systematically, we
dug an L-shaped trench in soil, so as to capture the widest
range of solar illumination conditions, and observed it
from all four cardinal directions every hour for a 24-hour
period. Figure 5-2 shows the trench.Sky conditions were
clear for this period; sunrise occurred between 6 and 7 am
and sunset between 7 and 8 pm. The full data set included
observing the trench from six different distances, ranging
from 4.6 to 18.3 m (15 to 60 feet). For all four viewing
directions, the interior of the trench was warmer than the
surround from 9 pm to 6 am. As expected, conditions
varied during the day based on sun position and time of

day. Figure 5-3 shows sample images taken at 9 pm and
7 am for what should be the worst-case viewing condition
for night-time thermal contrast, looking west. Since all
other imagery taken between these times showed similar
contrast, we do not show the rest here.

  

  
Figure 5-1. Top: color and 3-5 mm thermal infrared
imagery of a construction trench at JPL, taken at 10 pm.
Bottom: color and 3-5 mm thermal infrared imagery of a
pothole dug in soil at the same construction site, taken at
midnight.

3.8 m

3.7 m

0.53 m

0.53 m

North

Figure 5-2. Man-made trench, 0.75 m deep, dug for 24-
hour observations.

   
Figure 5-3. Worst-case viewing condition for night-time
thermal contrast, looking west at north-south arm of
trench. Left: 9 pm. Right: 7 am.



Finally, we acquired imagery of a number of natural
and man-made negative obstacles during UGV field test-
ing at Fort Polk, Louisiana, in November of 2003. The
schedule did not permit systematic variation of viewing
times and directions, as in the previous data set; however,
this set includes more variety of terrain and weather con-
ditions. Figures 5-4 and 5-5 show a sampling. Figure 5-4
is a natural erosion gully, or wadi, which was warmer
than the rest of the terrain at 9 pm. Figure 5-5 is a man-
made foxhole, which was very wet inside due to recent
rain. It was not warmer at 10 pm, but was distinctly
warmer when it was next observed, at 7 am.

In summary, all of these data support the theoretical
model of section 4.

 
Figure 5-4. Wadi seen in (a) color at 9 am and (b) ther-
mal IR at 9 pm. The bright area at the bottom of the IR
image is structure on the vehicle.

 
(a)                                   (b)

 
(c)                                   (d)

Figure 5-5. Imagery of foxhole.(a) color, 5 pm. (b)
Thermal IR, 5 pm. (c) IR, 10 pm. Structure in the bottom
of the image is part of the vehicle. (d) IR, 7 am.

6. Obstacle Detection Results
Our work to show that the confirmed thermal signature

actually enables improved obstacle detection is still at a
fairly early stage. So far, we have developed a simple
algorithm that looks for bright spots in thermal imagery
that could be negative obstacles and applies simple geo-
metric checks to rule out gross false alarms. The bright-
ness test scans up each column from the bottom of the
image, computing the running average brightness. When a
pixel is found that exceeds the average ground plane in-
tensity by a threshold, the pixel is flagged as the start of a
candidate negative obstacle. The algorithm then continues
to scan up the column until it finds the next pixel within
the threshold value of the average ground plane intensity;
this marks the end of the candidate obstacle. Tests on the
relative geometry of the start pixel, end pixel, and any
range pixels in between are then used to support or reject
the negative obstacle hypothesis. Once all columns are
processed in this manner, we group connected compo-
nents of column-wise obstacle blobs into obstacle re-
gions. One difficulty is that the obstacle interiors can be
sufficiently warmer that they saturate the image, which
prevents stereo from obtaining range data on their interior.
In this case, we base geometric checks just on the relative
height of the start and end pixels in each column. This
rules out warm building structures as potential negative
obstacles, but retains the saturated true obstacles.

 
 

 

 
  

Figure 6-1. Trench detection results, 9 pm facing west.
We have applied this algorithm to the 24-hour trench

data set and the foxhole imagery. Both data sets were
taken with cameras 1.2 m above the ground and a vertical
image resolution of 4.95 mrad/pixel. Note that this reso-
lution is over twice as coarse as the camera used for the
data set described in section 3, which was taken with dif-
ferent equipment several years earlier. Using the 6-pixel
detection rule from section 3 and the geometric model
from section 2, we predict that our standard geometry-
based algorithm could detect the trench in figure 5-2 (0.53
m wide) to a distance of about 4.2 m. The trench data set
includes imagery taken at 4.6, 6.1, 9.1, 12.2, 15.2, and
18.3 m from the trench. We processed the imagery for all
distances, four times of night (9 pm, 12, 3, and 6 am),
and all four approach directions. As illustrated in figure 6-
1, the trench was detected reliably to 6.1 m in all but one



frame of the data set. Over all 96 frames in the data set,
there were three frames with false alarms. These occurred
on wheel tracks that were warmer than the rest of the ter-
rain. Since the algorithm used here is extremely simple,
we anticipate that such false alarms can be mitigated by
more elaborate geometric analysis. Even with potential for
such false alarms, the combination of thermal imagery
and range data is superior to range data alone at detecting
true obstacles. Figure 6-2 shows results with the foxhole
imagery from Fort Polk. The foxhole was not detected as
an obstacle with range data alone acquired by color or
thermal stereo vision or by ladar. Figure 6-2c shows why
stereo fails. Although there is a gap in the range data at
the obstacle, there is no upslope, as there is for the exam-
ple in figures 3-1 to 3-3; hence, the detector failed. Note
that other areas that are not obstacles also produce gaps in
the range data and elevation map. Figure 6-2d shows that
using both thermal and geometric cues did enable detec-
tion.

7. Summary, Conclusions and Future Work
Negative obstacle detection is one of the key tall poles

in perception for autonomous UGV navigation. By ana-
lyzing the basic geometry of both positive and negative
obstacle detection, we showed why this is so hard:
whereas the angle subtended by a positive obstacle de-
creases as 

† 

1/R  with increasing range, for negative obsta-
cles is decreases as 

† 

1/R2. Therefore, detecting negative
obstacles with range data alone has a very short effective
lookahead distance, which translates into low safe driving
speeds.

We then presented a new approach to negative obstacle
detection, particularly at night, based the observation that
the interior of negative obstacles cools more slowly than
the surrounding terrain. We included a simple mathemati-
cal model for heat transfer in and around negative obsta-
cles that reveals this property and experimental results
that confirm it with imagery acquired over a 24-hour pe-
riod for a man-made trench. Less exhaustive observation
of other natural and man-made negative obstacles also
confirmed the property. The duration of the night for
which negative obstacles are warmer does appear to be
affected by weather and by the width of the obstacle; for
example, rain during the day reduces temperature differ-
ences and very large negative obstacles appear to have
smaller differences, as one would expect from our mathe-
matical model. We developed a simple algorithm that
combines thermal and geometric cues to detect negative
obstacles and showed that it achieved superior detection
performance to the use of range data alone.

We conclude that these results have fairly well estab-
lished that negative obstacles do remain warmer than their
surrounds at night under many conditions and that this
does lead to better obstacle detection. This has important
potential applications for UGV navigation and for driver
aid for manned vehicles.

Future work needs to address several issues, including
evaluating the heat transfer properties of negative obsta-
cles under more weather conditions, developing more
sophisticated algorithms to combine thermal and geomet-
ric analysis for negative obstacle detection, and modelling
solar illumination to attempt apply thermal signature to
day-time negative obstacle detection.

 
(a)                                   (b)

(c)

(d)
Figure 6-2. Foxhole detection.(a), (b): color and thermal
imagery taken at 7 am at a distance of 2.8 m. (c) Results
using range data alone (no detection). (d) Results with
thermal and geometric cues (detection).
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