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Abstract

In this paper we consider the output synchronization problem for heterogeneous networks of linear agents. The network’s communication
infrastructure provides each agent with a linear combination of its own output relative to that of neighboring agents, and it allows the agents
to exchange information about their own internal observer estimates. We design decentralized controllers based on setting the control input
of a single root agent to zero and letting the remaining agents synchronize to the root agent. A distinguishing feature of our work is that
the agents are assumed to be non-introspective, meaning that they possess no knowledge about their own state or output separate from
what is received via the network. We also consider the problem of regulating the agreement trajectory according to an a priori specified
reference model. In this case we assume that some of the agents have access to their own output relative to the reference trajectory.
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1 Introduction

The problem of achieving synchronization among agents in a
network—that is, asymptotic agreement on the agents’ state
or output trajectories—has received substantial attention in
recent years. The essential difficulty of the synchronization
problem is the lack of a central authority with the ability
to control the network as a whole. Instead, each agent must
implement a controller based on limited information about
itself and its surroundings—typically in the form of mea-
surements of its own state or output relative to that of neigh-
boring agents in the network.

Much of the attention has been directed toward state syn-
chronization in homogeneous networks (i.e., networks where
the agent models are identical), with each agent receiving in-
formation about its own state relative to that of neighboring
agents (e.g., Olfati-Saber and Murray, 2003, 2004; Olfati-
Saber, Fax, and Murray, 2007; Ren, Beard, and Atkins, 2007;
Ren and Atkins, 2007). Roy, Saberi, and Herlugson (2007),
Tuna (2008a), and Yang, Roy, Wan, and Saberi (2011a)
considered this type of problem for more general observa-
tion topologies and more complex identical agent models
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than previously considered. Others have studied the case
where the agents receive relative information about their own
partial-state output (e.g., Pogromsky and Nijmeijer, 2001;
Pogromsky, Santoboni, and Nijmeijer, 2002; Tuna, 2008b;
Li, Duan, Chen, and Huang, 2010). A key idea in the work
of Li et al. (2010), which was expanded upon by Yang,
Stoorvogel, and Saberi (2011c), is the development of a dis-
tributed observer. This observer makes additional use of the
network by allowing the agents to exchange information with
their neighbors about their own internal estimates. Many of
the results on the synchronization problem are rooted in the
seminal work of Wu and Chua (1995a,b).

1.1 Heterogeneous Networks and Output Synchronization

A limited amount of research has also been conducted on
heterogeneous networks (i.e., networks where the agent
models are non-identical). Ramı́rez and Femat (2007) pre-
sented a robust state-synchronization design for networks
of nonlinear systems with relative degree one, where each
agent implements a sufficiently strong feedback based on
the difference between its own state and that of a common
reference model. In the work of Xiang and Chen (2007) it
is assumed that a common Lyapunov function candidate is
available, which is used to analyze stability with respect
to a common equilibrium point. Depending on the system,
some agents may also implement feedbacks to ensure sta-
bility, based on the difference between those agents’ states
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and the equilibrium point. Zhao, Hill, and Liu (2011) ana-
lyzed state synchronization in a network of nonlinear agents
based on the network topology and the existence of certain
time-varying matrices. Controllers can be designed based
on this analysis, to the extent that the available information
and actuation allows for the necessary manipulation of the
network topology.

The above-cited works focus on synchronizing the agents’
internal states. In heterogeneous networks, however, the
physical interpretation of one agent’s state may be differ-
ent from that of another agent. Indeed, the agents may be
governed by models of different dimensions. In this case,
comparing the agents’ internal states is not meaningful,
and it is more natural to aim for output synchronization—
that is, agreement on some partial-state output from each
agent. Chopra and Spong (2008) focused on output syn-
chronization for weakly minimum-phase systems of rela-
tive degree one, using a pre-feedback within each agent
to create a single-integrator system with decoupled zero
dynamics. Pre-feedbacks were also used by Bai, Arcak,
and Wen (2011) to facilitate passivity-based designs. The
authors have previously considered output synchronization
for right-invertible agents, using pre-compensators and an
observer-based pre-feedback within each agent to yield a
network of asymptotically identical agents (Yang, Saberi,
Stoorvogel, and Grip, 2011b).

Kim, Shim, and Seo (2011) studied output synchronization
for uncertain single-input single-output, minimum-phase
systems, by embedding an identical model within each
agent, the output of which is tracked by the actual agent
output. A similar approach was taken by Wieland, Sepul-
chre, and Allgöwer (2011), who showed that a necessary
condition for output synchronization in heterogeneous net-
works is the existence of a virtual exosystem that produces
a trajectory to which all the agents asymptotically converge.
If one knows the model of an observable virtual exosystem
without exponentially unstable modes, which each agent
is capable of tracking, then it can be implemented within
each agent and synchronized via the network. The agent
can then be made to track the model with the help of a local
observer estimating the agent’s states.

1.2 Introspective Versus Non-Introspective Agents

The designs mentioned above for heterogeneous net-
works rely—explicitly or implicitly—on some sort of self-
knowledge that is separate from the information transmitted
over the network. In particular, the agents may be required
to know their own state, their own output, or their own
state/output relative to that of a reference trajectory. In this
paper we shall refer to agents that possess this type of
self-knowledge as introspective agents, to distinguish them
from non-introspective agents—that is, agents that have no
knowledge of their own state or output separate from what
is received via the network. This distinction is significant
because introspective agents have much greater freedom

to manipulate their internal dynamics (e.g., through the
use of pre-feedbacks) and thus change the way that they
present themselves to the rest of the network. The notion
of a non-introspective agent is also practically relevant;
for example, two vehicles in close proximity may be able
to measure their relative distance without either of them
having knowledge of their absolute position.

To the authors’ knowledge, the only result that solves the
output synchronization problem for a well-defined class of
heterogeneous networks of non-introspective agents is by
Zhao, Hill, and Liu (2010). In their work, the only informa-
tion available to each agent is a linear combination of out-
puts received over the network. However, the agents are as-
sumed to be passive—a strict requirement that, among other
things, requires the agents to be weakly minimum-phase and
of relative degree one.

1.3 Contributions of This Paper

In this paper we consider heterogeneous networks of non-
introspective linear agents that receive, via the network, a
linear combination of their own output relative to that of
neighboring agents. In the spirit of Li et al. (2010) we also
assume that the agents can exchange relative information
about their internal estimates using the network’s communi-
cation infrastructure. We design decentralized controllers for
achieving output synchronization under a set of straightfor-
ward assumptions about the agents and the topology of the
network. A version of this design has also been presented at
the 2012 American Control Conference (Grip, Yang, Saberi,
and Stoorvogel, 2012).

Based on the output-synchronization results we also con-
sider the slightly different problem of regulated output syn-
chronization. Here, the goal is not only to achieve output
synchronization, but to make the synchronization trajectory
follow an a priori given reference. When considering this
problem we assume that some of the agents are introspec-
tive in the sense that they know their own output relative to
that of the reference output.

1.4 Notation

Given a matrix A, A′ denotes its transpose and A∗ denotes
its conjugate transpose. We denote by A⊗B the Kronecker
product between matrices A and B. When clear from the
context, 0 denotes a zero matrix of appropriate dimensions.

2 Problem Formulation

We consider a network of N multiple-input multiple-output
agents of the form

ẋi = Aixi +Biui, (1a)
yi =Cixi +Diui, (1b)
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where xi ∈Rni , ui ∈Rmi , and yi ∈Rp. Our goal is to achieve
output synchronization among the agents, meaning that
limt→∞(yi− y j) = 0 for all i, j ∈ {1, . . . ,N}.

The agents are non-introspective; hence, agent i does not
have access to its own output yi. The only available infor-
mation comes from the network, which provides each agent
with a linear combination of its own output relative to that
of the other agents. In particular, agent i has access to the
quantity

ζi =
N

∑
j=1

ai j(yi− y j),

where ai j ≥ 0 and aii = 0. The topology of the network can
be described by a directed graph (digraph) G with nodes
corresponding to the agents in the network and edges given
by the coefficients ai j. In particular, ai j > 0 implies that an
edge exists from agent j to i. Agent j is then called a parent
of agent i, and agent i is called a child of agent j. The weight
of the edge equals the magnitude of ai j.

We shall frequently make use of the matrix G = [gi j], where
gii = ∑

N
j=1 ai j and gi j =−ai j for j 6= i. This matrix is known

as the Laplacian matrix of the digraph G and has the property
that all the row sums are zero. In terms of the coefficients
of G, ζi can be rewritten as

ζi =
N

∑
j=1

gi jy j.

We also assume that the agents can exchange relative in-
formation about their internal estimates using the network’s
communication infrastructure. Specifically, agent i is pre-
sumed to have access to the quantity

ζ̂i =
N

∑
j=1

ai j(ηi−η j) =
N

∑
j=1

gi jη j,

where η j ∈ Rp is a variable produced internally by agent j
as part of the controller. This variable will be specified as
we proceed with the control design.

2.1 Assumptions

We make the following assumptions about the network
topology and the individual agents.

Assumption 1 The digraph G has a directed spanning
tree with root agent K ∈ {1, . . . ,N}, such that for each
i ∈ {1, . . . ,N}\K,

(1) (Ai,Bi) is stabilizable
(2) (Ai,Ci) is observable
(3) (Ai,Bi,Ci,Di) is right-invertible
(4) (Ai,Bi,Ci,Di) has no invariant zeros in the closed right-

half complex plane that coincide with the eigenvalues
of AK
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Fig. 1. The depicted digraph contains multiple directed spanning
trees, rooted at nodes 2, 3, 4, 8, and 9. One of these, with root
node 2, is illustrated by bold arrows.

Remark 1 A directed tree is a directed subgraph of G , con-
sisting of a subset of the nodes and edges, such that every
node has exactly one parent, except a single root node with
no parents. Furthermore, there must exist a directed path
from the root to every other agent. A directed spanning tree
is a directed tree that contains all the nodes of G . A digraph
may contain many directed spanning trees, and thus there
may be several choices of root agent K. Fig. 1 illustrates a
digraph containing multiple directed spanning trees.

Remark 2 Right-invertibility of a quadruple (Ai,Bi,Ci,Di)
means that, given a reference output yr(t), there exist an
initial condition xi(0) and an input ui(t) such that yi(t) =
yr(t) for all t ≥ 0. For example, every single-input single-
output system is right-invertible, unless its transfer function
is identically zero.

Let the matrix ḠK = [gi j]i, j 6=K be defined from G by remov-
ing row and column number K, corresponding to the root of
a directed spanning tree of G . We shall need the following
result, which is proven in Appendix A.

Lemma 1 All the eigenvalues of ḠK are in the open right-
half complex plane.

3 Control Design

In this section we describe the construction of decentralized
controllers that achieve output synchronization. Before em-
barking on the actual design procedure, however, we shall
describe the motivation behind the design.

The main idea is to set the control input of the root agent
K to zero (i.e., uK = 0) and to also set ηK = 0. We then de-
sign controllers for all the other agents such that their out-
puts asymptotically synchronize with the trajectory yK(t).
That is, for each i ∈ {1, . . . ,N} \ K we wish to achieve
limt→∞(yi− yK) = 0. Equivalently, we wish to regulate the
synchronization error variable

ei := yi− yK

to zero, where the dynamics of ei is governed by[
ẋi

ẋK

]
=

[
Ai 0

0 AK

][
xi

xK

]
+

[
Bi

0

]
ui, (2a)

3



ei =
[
Ci −CK

][ xi

xK

]
+Diui. (2b)

The system (2) is in general not stabilizable. If xi and xK
were available to agent i as measurements, then the prob-
lem of making ei converge to zero would nevertheless be
solvable by standard output-regulation methods (see, e.g.,
Saberi, Stoorvogel, and Sannuti, 2000). But alas, the only
information available to agent i is ζi and ζ̂i. To achieve our
objective with such limited information, we carry out our
design for each agent i ∈ {1, . . . ,N}\K in three steps.

In Step 1 we construct a new state x̄i, via a transformation of
xi and xK , so that the dynamics of the synchronization error
variable ei can be described by the alternative equations

˙̄xi = Āix̄i + B̄iui :=

[
Ai Āi12

0 Āi22

]
x̄i +

[
Bi

0

]
ui, (3a)

ei = C̄ix̄i + D̄iui :=
[
Ci −C̄i2

]
x̄i +Diui. (3b)

The purpose of this state transformation is to reduce the di-
mension of the model underlying ei by removing redundant
modes that have no effect on ei. In particular, the model (2)
may be unobservable, but the model (3) is always observ-
able.

The properties of the model (3) also allow us, in Step 2 of the
design, to construct a controller that regulates ei to zero by
using state feedback from x̄i. This controller is not directly
implementable, however, because x̄i is not known to agent
i. This brings us to Step 3 of the design, where we construct
an observer that makes an estimate of x̄i available to agent
i. This observer is based on the information ζi and ζ̂i re-
ceived via the network, and it works in a distributed manner
together with the observers for the other agents to achieve
convergence. The observer design is based on previous re-
sults on distributed observer design for homogeneous net-
works. Since our network is heterogeneous, we first perform
a second state transformation of x̄i to χi, in order to obtain
a dynamical model that is substantially the same as for the
other agents. In particular, the model differences now occur
only in particular locations where they can be suppressed by
using high-gain observer techniques. By combining the ob-
server estimates with the state-feedback controller designed
in Step 2, we achieve output synchronization.

3.1 Design Preliminaries

Due to the design strategy of setting uK = 0, the trajectory
yK(t) becomes the unforced response of agent K, consisting
of a linear combination of the observable modes of the pair
(AK ,CK). Asymptotically stable modes vanish as t→∞, and
they therefore play no role asymptotically. For simplicity of
presentation, we therefore assume that all the eigenvalues
of AK are in the closed right-half complex plane and that

(AK ,CK) is observable. We make this assumption without
any loss of generality since, if AK does contain unobservable
or asymptotically stable modes, we can always create an
auxiliary model excluding those modes for the purpose of
control design (see Appendix C for details).

Below we describe the three steps of the design procedure
that must be carried out for each agent i ∈ {1, . . . ,N} \K.
In addition to agent i’s system matrices (Ai,Bi,Ci,Di), the
information needed to carry out these three steps for agent
i is as follows:

• the matrices AK and CK of the root agent
• a common integer n̄ such that n̄ ≥ ni + nK for all i ∈
{1, . . . ,N}\K 1

• a common matrix L ∈ Rp×pn̄, freely chosen 2

• a common high-gain parameter ε ∈ (0,1]
• a common number τ > 0 that is a lower bound on the

real part of the eigenvalues of the matrix ḠK defined in
Section 2.1

Based on this information, we can define the matrices A ∈
Rpn̄×pn̄, C ∈ Rp×pn̄, Ωε ∈ Rpn̄×pn̄, and Lε ∈ Rpn̄×pn̄ as

A =

[
0 Ip(n̄−1)

0 0

]
, C =

[
Ip 0

]
,

Ωε =


Ipε−1

. . .

Ipε−n̄

 , Lε =

[
0

ε n̄+1LΩε

]
.

The pair (A +Lε ,C ) is always observable; hence, we can
define a matrix Pε = P ′

ε > 0 as the unique solution of the
algebraic Riccati equation

(A +Lε)Pε +Pε(A +Lε)
′−2τPεC

′C Pε + Ipn̄ = 0.
(4)

The matrices A , C , Ωε , Lε , and Pε will be used during
the design procedure.

3.2 Design Procedure for Agent i ∈ {1, . . . ,N}\K

Step 1: State Transformation

Let Oi be the observability matrix corresponding to the sys-
tem (2):

Oi =


Ci −CK
...

...

CiA
ni+nK−1
i −CKAni+nK−1

K

 . (5)

1 The integer n̄ can be defined less conservatively as a bound on
ni + ri for i ∈ {1, . . . ,N}\K, where ri is defined during Step 1 of
the design procedure for each agent.
2 See Section 3.4 for an explanation of the purpose of L.
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Let qi denote the dimension of the null space of Oi, and
define ri = nK − qi. Next, define Λiu ∈ Rni×qi and Φiu ∈
RnK×qi such that

Oi

[
Λiu

Φiu

]
= 0, rank

[
Λiu

Φiu

]
= qi. (6)

Because (Ai,Ci) and (AK ,CK) are observable, Λiu and Φiu
have full column rank (see Appendix D). Let therefore Λio
and Φio be defined such that Λi := [Λiu,Λio] ∈ Rni×ni and
Φi := [Φiu,Φio] ∈RnK×nK are nonsingular. We define a new
state variable x̄i ∈ Rni+ri as

x̄i =

[
xi−ΛiMiΦ

−1
i xK

−NiΦ
−1
i xK

]
,

where Mi ∈ Rni×nK and Ni ∈ Rri×nK are defined as

Mi =

[
Iqi 0

0 0

]
, Ni =

[
0 Iri

]
.

The following lemma, which is proven in Appendix A,
shows how the synchronization error ei is given in terms of
x̄i.

Lemma 2 The synchronization error variable ei is governed
by dynamical equations of the form (3), where (Āi,C̄i) is
observable and the eigenvalues of Āi22 are a subset of the
eigenvalues of AK .

Step 2: State-Feedback Control Design

We now design a controller as a function of x̄i to regulate ei to
zero. Consider the following equations with unknowns Πi ∈
Rni×ri and Γi ∈ Rmi×ri , commonly known as the regulator
equations:

ΠiĀi22 = AiΠi + Āi12 +BiΓi, (7a)
CiΠi−C̄i2 +DiΓi = 0. (7b)

Based on Πi and Γi, we define a matrix

F̄i =
[
Fi Γi−FiΠi

]
, (8)

where Fi is chosen such that Ai +BiFi is Hurwitz. The fol-
lowing lemma, which is proven in Appendix A, shows that
the regulator equations (7) are always solvable and that the
matrix F̄i can be used to define a state-feedback controller.

Lemma 3 The regulator equations (7) are solvable, and the
state-feedback controller ui = F̄ix̄i ensures that limt→∞ ei =
limt→∞(yi− yK) = 0.

Step 3: Observer-Based Implementation

Our last step is to design an observer to produce an estimate
of x̄i, denoted by ˆ̄xi. Define χi = Tix̄i, where

Ti =


C̄i
...

C̄iĀn̄−1
i

 .
Note that Ti is not necessarily a square matrix; however,
due to observability of (Āi,C̄i), Ti is injective, which implies
that T ′i Ti is nonsingular. In terms of χi, we can write the
equations governing ei as

χ̇i = (A +Li)χi +Biui, χi(0) = Tix̄i(0), (9a)
ei = C χi +Diui, (9b)

where

Li =

[
0

Li

]
, Bi = TiB̄i, Di = D̄i,

and where Li = C̄iĀn̄
i (T

′
i Ti)

−1T ′i . We construct the observer

˙̂χi = (A +Li)χ̂i +Biui +ΩεPεC
′(ζi− ζ̂i), (10a)

ˆ̄xi = (T ′i Ti)
−1T ′i χ̂i. (10b)

Based on the observer estimate, we define the variable ηi =
C χ̂i +Diui to be shared with the other agents via the net-
work’s communication infrastructure as described in Section
2, and the observer-based control law

ui = F̄i ˆ̄xi. (11)

Together, the observers for agents i ∈ {1, . . . ,N} \K form
a distributed observer parameterized by a common high-
gain parameter ε . The following lemma, which is proven
in Appendix A, shows that all the observation errors vanish
asymptotically if ε is chosen sufficiently small.

Lemma 4 There exists an ε∗ ∈ (0,1] such that, if ε is cho-
sen such that ε ∈ (0,ε∗], then for each i ∈ {1, . . . ,N} \K,
limt→∞(x̄i− ˆ̄xi) = 0.

3.3 Main Result

By implementing the observer-based control law (11) for
each agent i∈ {1, . . . ,N}\K, we obtain a decentralized con-
troller structure that achieves output synchronization. The
following theorem formalizes this result.

Theorem 1 There exists an ε∗ ∈ (0,1] such that, if ε is
chosen such that ε ∈ (0,ε∗], then for each i, j ∈ {1, . . . ,N},
limt→∞(yi− y j) = 0.
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PROOF Since the systems are linear, the result follows from
Lemmas 3 and 4 and the separation principle. �

3.4 Remarks on the Design Procedure

Having presented the design procedure, some remarks are
in order.

The purpose of Step 1 is to reduce the dimension of the
model (2) by removing redundant modes that cannot be ob-
served from ei. Such modes exist if agent i and agent K
share particular unforced solutions. Consider, for example,
the case where agents i and K are identical. Then the states
xi and xK cannot be individually observed from ei = yi−yK ,
since there are infinitely many initial conditions that yield the
unforced solution ei = 0. If, on the other hand, we define the
state x̄i = xi−xK , then we obtain the model ˙̄xi = Aix̄i+Biui,
ei = Cix̄i +Diui, which is observable. Indeed, it is easily
verified that in our design procedure, identical agents yield
qi = ni = nK and ri = 0, and that Λi = Ini and Φi = InK are
valid choices; thus, one obtains precisely x̄i = xi−xK . In the
general case, Step 1 yields a model (3) that incorporates the
difference between modes that are shared between agents i
and K in addition to modes from both agent i and K that are
not shared.

In Step 2 we must find the solutions Πi and Γi of the regulator
equations (7). A special situation arises when ri = 0, which
implies that Āi22, Āi12, and C̄i2 are empty matrices. In this
case, Πi and Γi are also empty matrices, and the need to
solve the regulator equations vanishes. This situation occurs,
in particular, if agent i and agent K are identical.

In Step 3, we introduce a state transformation from x̄i to χi,
where χi has dimension pn̄. Since the dimension of x̄i may
be less than pn̄, the transformation to χi may involve an over-
parameterization. In this case, (9) is not the only possible
dynamical model of χi, but it is always one of the possible
representations. After performing the state transformation,
we proceed to construct an observer that depends on a high-
gain parameter ε . Following the proof of Lemma 4, it can be
seen that ε must be chosen to stabilize the dynamics (A.2) by
making the matrix IN−1⊗(A +Lε)−ḠK⊗(PεC ′C )−L̃ε

Hurwitz. This works because the nonzero elements of L̃ε are
on the form ε n̄+1(L−Li)Ωε (meaning that ‖L̃ε‖ = O(ε)),
and L̃ε is therefore dominated by the Hurwitz matrix IN−1⊗
(A +Lε)− ḠK ⊗ (PεC ′C ) as ε → 0. The freely chosen
matrix L plays a role in determining how small ε needs to
be chosen, because the difference L−Li affects the nonzero
elements of L̃ε . If sufficient information is available about
the agent models, L can be chosen to make the differences
L−Li small, in order to reduce the need for high gain. If
all the agents are identical, then Li is the same for all the
agents and one can choose L = Li. In this case, L̃ε vanishes
and ε can be chosen arbitrarily. It is therefore evident that
the role of ε is to suppress the differences in agent models
that exist in heterogeneous networks.

3.4.1 Information Required About the Network

When designing the controller for agent i, it is necessary to
know the model (Ai,Bi,Ci,Di) of agent i, but it is not nec-
essary to know the models of all the other agents or the ex-
act topology of the network. Some additional information is
nevertheless required, as specified in Section 3.1. To justify
the required level of information, we note that most of the re-
quired information is also assumed available in the literature
on homogeneous networks, albeit implicitly. In a homoge-
neous network, knowledge of Ai and Ci implies knowledge
of AK and CK , since the models are identical. Moreover,
n̄ = 2ni is a known bound on ni+nK , since the agents are of
the same order. As described above, the matrices Li are all
the same in a homogeneous network; hence one can choose
L = Li, which means that ε = 1 is always a valid choice.
The lower bound τ > 0 on the real part of the eigenvalues
of ḠK can be viewed as a measure of the connectivity of
the network. Similar measures of connectivity are typically
assumed available in the literature on general homogeneous
networks (Tuna, 2008a; Li et al., 2010; Yang et al., 2011c).

Even though exact information about the network is not
required in the design process, it is nevertheless useful, as
it is then possible to search for a non-conservative ε that
makes IN−1⊗ (A +Lε)− ḠK ⊗ (PεC ′C )− L̃ε Hurwitz.
One can also define τ as a tight lower bound on the real part
of the eigenvalues of ḠK and n̄ as a tight bound on ni + ri
in accordance with footnote 1 on page 4.

3.5 Computational Complexity

The controllers constructed in this paper contain internal
dynamics in the form of an observer for χi. The internal
dynamics introduces additional computational complexity
compared to the static control laws that have previously been
used for synchronization of of single and double integrators
(e.g., Olfati-Saber and Murray, 2003, 2004; Ren and Atkins,
2007) and general homogeneous networks with relative-state
information (e.g., Tuna, 2008a; Yang et al., 2011a). The need
for internal dynamics arises for two reasons. First, since only
relative-output information is exchanged, the agents need
internal observer dynamics to estimate unmeasured states.
Second, since the agents are non-identical, the agreement
manifold may contain modes that are not contained within
all the agents, and which must therefore be replicated by
internal dynamics according to the internal model principle.

The order of the internal dynamics is n̄, which is an upper
bound on ni + nK for i ∈ {1, . . . ,N} \K. Alternatively, as
remarked in footnote 1 on page 4, n̄ can be defined less
conservatively as a bound on ni + ri. The integer ri can be
viewed as representing the order of the part of the root agent
dynamics that is not contained within agent i. Hence, the
computational complexity is in this case dependent on how
similar the agents are to one another. Indeed, in the case of
identical agents, one always has ri = 0, so n̄ = ni, meaning
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that each agent implements an observer of order equal to
that of its own dynamics.

An interesting topic of future work is the reduction of com-
putational complexity by finding ways to reduce the order
of the internal dynamics within each agent.

4 Regulated Output Synchronization

Our focus so far has been on achieving agreement on a
common output trajectory, without regard to the particular
properties of that trajectory. In this section we consider the
related problem of regulating the outputs toward a desired
reference trajectory yr(t), which is defined as the output of
an autonomous exosystem

ω̇ = Sω, (12a)
yr = Rω, (12b)

where ω ∈ Rnω and yr ∈ Rp. Our goal is to achieve
limt→∞ ei = 0 for each i ∈ {1, . . . ,N}, where ei is now
defined as

ei := yi− yr.

By the same argument as in Section 3.1, we assume without
loss of generality that (S,R) is observable and that all the
eigenvalues of S are in the closed right-half complex plane.

In order for the agents to follow the reference trajectory,
some information must be available to the network about
agent outputs relative to the reference trajectory. In partic-
ular, let I ⊂ {1, . . . ,N} be a set of indices corresponding
to a subset of agents in the network. We assume that each
agent i ∈ {1, . . . ,N} has access to the quantity

ψi = ιi(yi− yr), ιi =

{
1, i ∈I ,

0, i /∈I .

That is, each agent in the index set I knows the difference
between its own output and that of the reference trajectory.
To proceed with the design, we need to replace Assumption
1 with a slightly modified assumption.

Assumption 1′ Every node of G is a member of a directed
tree with the root contained in I . Furthermore, for each
i ∈ {1, . . . ,N},

(1) (Ai,Bi) is stabilizable
(2) (Ai,Ci) is observable
(3) (Ai,Bi,Ci,Di) is right-invertible
(4) (Ai,Bi,Ci,Di) has no invariant zeros in the closed right-

half complex plane that coincide with the eigenvalues
of S

We define the matrix Ḡ := G+diag(ι1, . . . , ιN). It then fol-
lows from Lemma 7 in Appendix B that all the eigenvalues
of Ḡ are in the open right-half complex plane.

4.1 Control Design

The control design is similar to that in Section 3.2, except
that the exosystem now plays the role of agent K, and we
carry out three steps for each agent i∈{1, . . . ,N}. In addition
to agent i’s system matrices (Ai,Bi,Ci,Di), the information
needed to carry out these three steps is as follows:

• the matrices S and R of the exosystem
• a common integer n̄ such that n̄ ≥ ni + nω for all i ∈
{1, . . . ,N} (see footnote 1 on page 4 for a less conservative
definition)

• a common matrix L ∈ Rp×pn̄, freely chosen
• a common high-gain parameter ε ∈ (0,1]
• a common number τ > 0 that is a lower bound on the real

part of the eigenvalues of the matrix Ḡ

Based on this information, the matrices A , C , Ωε , Lε , and
Pε can be defined in the same way as in Section 3.1.

4.1.1 Design Procedure for Agent i ∈ {1, . . . ,N}

We follow the exact procedure of Steps 1 and 2 in Section
3.2, with xK = ω , yK = yr, and (AK ,CK) = (S,R). 3 This
yields a state x̄i such that the dynamics of the synchroniza-
tion error ei is governed by the system (3), with the same
properties as those shown in Lemma 2 (with AK replaced by
S). Similar to Lemma 3, we can therefore state the following
result.

Lemma 5 The regulator equations (7) are solvable, and the
state-feedback controller ui = F̄ix̄i, where F̄i = [Fi,Γi−FiΠi]
and Fi is chosen such that Ai +BiFi is Hurwitz, ensures that
limt→∞ ei = limt→∞(yi− yr) = 0.

We continue by constructing an observer. Let χi be defined
in the same way as in Step 3 of Section 3.2, to obtain the
dynamic equations (9). We construct the observer

˙̂χi = (A +Li)χ̂i +Biui +ΩεPεC
′(ζi− ζ̂i)

+ΩεPεC
′(ψi− ιi(C χ̂i +Diui)), (13a)

ˆ̄xi = (T ′i Ti)
−1T ′i χ̂i. (13b)

Finally, we define ηi = C χ̂i +Diui and ui = F̄i ˆ̄xi as before.

The following lemma, which is proven in Appendix A,
shows that all the estimation errors vanish asymptotically if
the high-gain parameter ε is chosen sufficiently small.

Lemma 6 There exists an ε∗ ∈ (0,1] such that, if ε is chosen
such that ε ∈ (0,ε∗], then for each i ∈ {1, . . . ,N} we have
limt→∞(x̄i− ˆ̄xi) = 0.

3 We note that Assumption 1′ ensures that Properties 1–4 of
Assumption 1 now hold for each i ∈ {1, . . . ,N}, which facilitates
the design in Steps 1 and 2.
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Based on Lemmas 5 and 6, we can state the following re-
sult, which shows that regulated output synchronization is
achieved.

Theorem 2 There exists an ε∗ ∈ (0,1] such that, if ε is
chosen such that ε ∈ (0,ε∗], then for each i ∈ {1, . . . ,N},
limt→∞(yi− yr) = 0.

5 Example

We illustrate the results from Section 3 on a network of ten
agents. Agents 1 and 2 are composed as the cascade of a
second-order oscillator and a single integrator:

Ai =


0 1 0

0 0 1

0 −1 0

 , Bi =


0

0

1

 , Ci =
[
1 0 0

]
, Di = 0.

Agents 3, 4, and 5 are double integrators:

Ai =

[
0 1

0 0

]
, Bi =

[
0

1

]
, Ci =

[
1 0
]
, Di = 0.

Agents 6, 7, and 8 are single integrators: Ai = 0, Bi = 1,
Ci = 1, Di = 0. Finally, agents 9 and 10 are second-order
mass-spring-damper systems:

Ai =

[
0 1

−2 −2

]
, Bi =

[
0

1

]
, Ci =

[
1 0
]
, Di = 0.

The topology of the network is given by the digraph depicted
in Fig. 1, which contains multiple directed spanning trees.
One of these is rooted at node 2, and we therefore choose
K = 2 for our design. The real part of the eigenvalues of the
matrix Ḡ2, constructed by removing row and column 2 from
the Laplacian of the digraph in Fig. 1, are lower bounded
by approximately 0.33. We assume that a bound τ = 0.3
is known during the design process. We also assume that a
bound n̄ = 6 on ni + n2, i ∈ {1, . . . ,10} \ 2, is known. The
matrix L is chosen as the zero matrix. Following the design
procedure in Section 3.2, we set u2 = 0 and proceed with
Steps 1–3 for each of the other agents.

For illustrative purposes, we give the details for agent 3. In
Step 1, we first compute O3 as

O3 =



1 0 −1 0 0

0 1 0 −1 0

0 0 0 0 −1

0 0 0 1 0

0 0 0 0 1


=⇒ q3 = 1, r3 = 2.

We may choose Λ3u = [1,0]′ and Φ3u = [1,0,0]′, and hence
we can set Λ3 = I2 and Φ3 = I3. It follows that

x̄3 =


1 0

0 1

0 0

0 0

x3−


1 0 0

0 0 0

0 1 0

0 0 1

x2.

It can be confirmed that the dynamics of x̄i with output ei
takes the form of (3) with

Ā312 =

[
1 0

0 0

]
, Ā322 =

[
0 1

−1 0

]
, C̄32 =

[
0 0
]
.

In Step 2, the regulator equations (7) are found to have the
solution

Π3 =

[
0 0

−1 0

]
, Γ3 =

[
0 −1

]
.

We select the matrix F3 = [−2− 3] to place the poles of
A3 +B3F3 at −1 and −2. Thus, we obtain the matrix F̄3 =
[−2,−3,−3,−1].

In Step 3 we design the observer according to the procedure
in Section 3.2, with the high-gain parameter ε = 0.3. The
relevant matrices for the model (9) are

A =

[
0 I5

0 0

]
, C =

[
1 0 0 0 0 0

]
,

B3 =
[
0 1 0 · · · 0

]′
, L3 =

[
0 0 0.5 0 −0.5 0

]
.

We perform the same procedure for the other agents. For
agent 1, we obtain qi = 3 and ri = 0; for agents 6, 7, and
8, we obtain qi = 1 and ri = 2; and for agents 9 and 10, we
obtain qi = 0 and ri = 3. Fig. 2 shows the resulting simulated
output for all ten agents.

6 Concluding Remarks

The designs presented in this paper rely on a set of conditions
about the agents and the network that are straightforward to
verify. However, they are not all strictly necessary. Inspect-
ing the proofs of our results we see, for example, that the
condition on the invariant zeros in Assumption 1 (and 1′) is
used only in the proof of Lemma 3 (5) to guarantee that no
invariant zeros of (Ai,Bi,Ci,Di) coincide with the eigenval-
ues of Āi22. Since the eigenvalues of Āi22 are only a subset
of the eigenvalues of AK (S), the quadruple (Ai,Bi,Ci,Di)
can be allowed to contain certain invariant zeros of AK (S).
Indeed, in the special case of identical agents, the matrix
Āi22 vanishes, so the condition on the invariant zeros is not
needed. Similarly, the condition of right-invertibility is used

8



Time t

A
ge

n
t

o
u

tp
u

ts
y

1
,.
..
,y

1
0

0 5 10 15 20 25 30
−40

−20

0

20

40

60

80

Fig. 2. Outputs from the simulation example

only to guarantee solvability of the regulator equations (7),
which vanish for identical agents. Hence, if agent i is iden-
tical to AK , then it does not need to be right-invertible.

Finally, we also note that by choosing uK = 0 and ηK = 0
in the design for output synchronization, we discard agent
K’s actuation capability and the information that it receives
from the network. It is possible that the assumptions made
in this paper can be relaxed by letting all the agents par-
ticipate actively in the synchronization process (as is done
in the regulated output synchronization problem), although
this is yet to be investigated. Current research is focused on
relaxing the assumptions with respect to right-invertibility
and invariant zeros.
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A Proof of Lemmas 1, 2, 3, 4, and 6

PROOF (LEMMA 1) The set of nodes {1, . . . ,N}\K can be
grouped into directed subgraphs G1, . . . ,GM , each of which
has a directed spanning tree rooted at a child of node K. We
can assume that there are no edges from Gk to G j if k > j
(if such an edge exists, then the child node in G j can be
moved to Gk). With this permutation, the matrix ḠK takes
the block-triangular form

ḠK =


G̃11 · · · 0

...
. . .

...

G̃M1 · · · G̃MM

 .
Each submatrix G̃ii, i ∈ 1, . . . ,M, can be written as G̃ii =
Gi+Di, where Gi is the Laplacian of Gi and Di is a diagonal
matrix whose j’th entry is the total weight of all the edges to
node j of Gi from nodes in G outside of Gi. Since Gi contains
a directed spanning tree whose root is a child of node K, the
diagonal element in Di corresponding to that root is positive.
It therefore follows from Lemma 7 in Appendix B that all the
eigenvalues of G̃ii are in the open right-half complex plane.
The same is true for ḠK , due to its block-triangular form.�
PROOF (LEMMA 2) The definitions of Λiu and Φiu imply
that the columns of [Λ′iu,Φ

′
iu]
′ span the unobservable sub-

space of the model (2), which is invariant with respect to
blkdiag(Ai,AK). Hence, there exists a matrix Ui ∈ Rqi×qi

such that[
Ai 0

0 AK

][
Λiu

Φiu

]
=

[
Λiu

Φiu

]
Ui,

[
Ci −CK

][Λiu

Φiu

]
= 0. (A.1)

Let x̄i be partitioned as x̄i = [x̄′i1, x̄
′
i2]
′, where x̄i1 =

xi−ΛiMiΦ
−1
i xK and x̄i2 = −NiΦ

−1
i xK . Using the equality

CiΛiu =CKΦiu, derived from (A.1), we calculate ei in terms
of x̄i1 and x̄i2:

ei =Cixi−CKxK +Diui

=Cixi−CK

[
Φiu Φio

]
Φ
−1
i xK +Diui

=Cixi−
[
CiΛiu CKΦio

]
Φ
−1
i xK +Diui

=Cixi− (CiΛiMi +CKΦiN′i Ni)Φ
−1
i xK +Diui

=Ci(xi−ΛiMiΦ
−1
i xK)−CKΦiN′i NiΦ

−1
i xK +Diui

=Cix̄i1 +CKΦiN′i x̄i2 +Diui.

From (A.1), we also have that AiΛiu = ΛiuUi and AKΦiu =
ΦiuUi. We therefore easily derive that there exist matrices
Qi and Ri on the form

Qi =

[
Ui Qi12

0 Qi22

]
, Ri =

[
Ui Ri12

0 Ri22

]
,

such that AiΛi = ΛiQi and AKΦi = ΦiRi. For x̄i1 we can now
calculate the state equations as

˙̄xi1 = Aixi−ΛiMiΦ
−1
i AKxK +Biui

= Aixi−ΛiMiRiΦ
−1
i xK +Biui

= Aixi−Λi

[
Ui Ri12

0 0

]
Φ
−1
i xK +Biui

= Aixi−Λi

[
Ui 0

0 0

]
Φ
−1
i xK−Λi

[
0 Ri12

0 0

]
Φ
−1
i xK +Biui

= Aixi−ΛiQiMiΦ
−1
i xK−Λi

[
Ri12

0

]
NiΦ

−1
i xK +Biui

= Ai
(
xi−ΛiMiΦ

−1
i xK

)
−Λi

[
Ri12

0

]
NiΦ

−1
i xK +Biui

= Aix̄i1 +Λi

[
Ri12

0

]
x̄i2 +Biui.

For x̄i2 we have ˙̄xi2 = −NiΦ
−1
i AKxK = −NiRiΦ

−1
i xK =

−Ri22NiΦ
−1
i xK = Ri22x̄i2. Defining

Āi12 = Λi

[
Ri12

0

]
, Āi22 = Ri22, C̄i2 =−CKΦiN′i ,

we see that ei is governed by the dynamical equations (3).
To see that (Āi,C̄i) is observable, note that the observability
matrix Oi of the system (2) has rank ni+ri, which is precisely
the order of the system (3). To see that the eigenvalues of Āi22
are a subset of the eigenvalues of AK , note that, due to the
block-triangular form of Ri, the eigenvalues of Āi22 = Ri22
are a subset of the eigenvalues of Ri. Since Ri is obtained
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from AK via a similarity transform Ri = Φ
−1
i AKΦi, it has the

same eigenvalues as AK . �

PROOF (LEMMA 3) Using the notation of the proof
of Lemma 2, the task of achieving limt→∞ ei = 0 can
be viewed as an output regulation problem, where the
subsystem ˙̄xi2 = Āi22x̄i2 is the exosystem and ˙̄xi1 =
Aix̄i1+ Āi12x̄i2+Biui is the system to be regulated to achieve
ei = Cix̄i1− C̄i2x̄i2 +Diui = 0. Since (Ai,Bi) is stabilizable
and the eigenvalues of Āi22 are in the closed right-half com-
plex plane, Saberi et al. (2000, Theorem 2.3.1) shows that
the state-feedback controller ui = F̄ix̄i solves the regulation
problem, assuming the regulator equations (7) are solvable.
From Saberi et al. (2000, Corollary 2.5.1), the regulator
equations are solvable if, for each λ that is an eigen-
value of Āi22, the Rosenbrock system matrix

[
Ai−λ I Bi

Ci Di

]
has rank ni + p. The Rosenbrock system matrix has nor-
mal rank ni + p due to right-invertibility of the quadruple
(Ai,Bi,Ci,Di) (see Saberi, Sannuti, and Chen, 1995, Prop-
erty 3.1.6). Since this quadruple has no invariant zeros
coinciding with eigenvalues of AK and the eigenvalues of
Āi22 are a subset of the eigenvalues of AK , it follows that
the rank of the Rosenbrock system matrix is equal to the
normal rank for each λ that is an eigenvalue of Āi22. �

PROOF (LEMMA 4) Let χ̃i = χi− χ̂i. Then

˙̃χi = (A +Li)χ̃i−ΩεPεC
′(ζi− ζ̂i)

= (A +L )χ̃i− L̃iχ̃i−ΩεPεC
′(ζi− ζ̂i),

where L = [0,L′]′ and L̃i := L −Li. Noting that for each
i ∈ {1, . . . ,N}, ∑

N
j=1 gi j = 0, we have

ζi =
N

∑
j=1

gi jy j =
N

∑
j=1

gi j(y j− yK)

= ∑
j∈{1,...,N}\K

gi je j = ∑
j∈{1,...,N}\K

gi j(C χ j +D ju j).

Also, since ηK = 0, ζ̂i = ∑ j∈{1,...,N}\K gi j(C χ̂ j +D ju j). It
follows that

˙̃χi = (A +L )χ̃i− L̃iχ̃i−Ωε ∑
j∈{1,...,N}\K

gi jPεC
′C χ̃ j.

Introducing the state transformation ξi = ε−1Ω−1
ε χ̃i, it can

be confirmed that

εξ̇i = (A +Lε)ξi− L̃iε ξi− ∑
j∈{1,...,N}\K

gi jPεC
′C ξ j,

where

L̃iε =

[
0

ε n̄+1(L−Li)Ωε

]
.

Define ξ = [ξ ′1, . . . ,ξ
′
K−1,ξ

′
K+1, . . . ,ξ

′
N ]
′ and

L̃ε = blkdiag(L̃1ε , . . . ,L̃(K−1)ε ,L̃(K+1)ε , . . . ,L̃Nε), and

note that ‖L̃ε‖= O(ε). The overall dynamics of ξ is

εξ̇ = (IN−1⊗ (A +Lε)− ḠK⊗ (PεC
′C )−L̃ε)ξ . (A.2)

We shall show that the dynamics in (A.2) can be stabilized
by making ε small, in order to diminish L̃ε .

Following the methodology of Wu and Chua (1995b), we
define U such that J =U−1ḠKU , where J is the Jordan form
of ḠK , and introduce the transformation ξ = (U ⊗ Ipn̄)ν .
Then

εν̇ = (IN−1⊗ (A +Lε)− J⊗ (PεC
′C )− W̃ε)ν , (A.3)

where W̃ε := (U−1⊗ Ipn̄)L̃ε(U ⊗ Ipn̄). Note that ‖W̃ε‖ =
O(ε). Partitioning ν = [ν∗1 , . . . ,ν

∗
N−1]

∗ in the same way as
ξ , we have that

εν̇i = Riνi−ρiPεC
′C νi+1−

N−1

∑
j=1

w̃εi jν j, i ∈ 1, . . . ,N−2,

εν̇N−1 = RN−1νN−1−
N−1

∑
j=1

w̃ε(N−1) jν j,

where Ri = A +Lε −λiPεC ′C ; λi is the i’th eigenvalue
along the diagonal of J; ρi ∈ {0,1}; and w̃εi j is the (i, j)’th
pn̄× pn̄ block of W̃ε . Following the results of Yang et al.
(2011c), we can show that Ri is Hurwitz:

RiPε +PεR
∗
i

= (A +Lε)Pε +Pε(A +Lε)
′−2Re(λi)PεC

′C Pε

= (A +Lε)Pε +Pε(A +Lε)
′

−2τPεC
′C Pε −2(Re(λi)− τ)PεC

′C Pε ≤−Ipn̄.

Next, note that there exists an MP > 0 such that for all suffi-
ciently small ε > 0, ‖Pε‖<MP. To see this, let P be the so-
lution of the Riccati equation A P+PA ′−2τPC ′C P+
2Ipn̄ = 0 and let ε be small enough that LεP+PL ′

ε ≤ Ipn̄.
Then clearly (A +Lε)P+P(A +Lε)

′−2τPC ′C P+
In̄p ≤ 0 and it then follows from standard LQ theory that
Pε ≤P (see, e.g., Kwakernaak and Sivan, 1972).

Define a Lyapunov function V = ε ∑
N−1
i=1 `iv∗i P

−1
ε vi,

where the `i’s are defined recursively by `N−1 = 1 and
`i = `i+1/(9M4

P) for i ∈ 1, . . . ,N−2. Then

V̇ =
N−1

∑
i=1

`iν
∗
i P−1

ε (RiPε +PεR
∗
i )P

−1
ε νi

−2Re

(
N−2

∑
i=1

`iρiν
∗
i P−1

ε (PεC
′C Pε)P

−1
ε νi+1

)

−2Re

(
N−1

∑
i=1

N−1

∑
j=1

`iν
∗
i P−1

ε (w̃εi jPε)P
−1
ε ν j

)
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≤−
N−1

∑
i=1

`iυ
2
i +2

N−2

∑
i=1

`iM2
Pυiυi+1

+2
N−1

∑
i=1

N−1

∑
j=1

`i‖w̃εi jPε‖υiυ j,

where υi := ‖P−1
ε νi‖. Note that the first two terms can be

written as

− 1
3

N−1

∑
i=1

`iυ
2
i −

1
3
`1υ

2
1 −

1
3
`N−1υ

2
N−1

−
N−2

∑
i=1

 `iM2
P√

1
3`i+1

υi−
√

1
3
`i+1υi+1

2

−
N−2

∑
i=1

(
1
3
`i−

`2
i M4

P
1
3`i+1

)
υ

2
i .

From the definition of `i, it can be confirmed that the
last term is zero. It follows that V̇ ≤ − 1

3 ∑
N−1
i=1 `iυ

2
i +

2∑
N−1
i=1 ∑

N−1
j=1 `iMP‖w̃εi j‖υiυ j, Since ‖w̃εi j‖= O(ε) and the

`i’s are independent of ε , the first quadratic term domi-
nates the second quadratic term for all sufficiently small
ε , and hence V̇ is negative definite. It now follows that
limt→∞ ν = 0, which implies limt→∞ ξ = 0. This in turn im-
plies that χ̂i converges to χi = Tix̄i, and hence ˆ̄xi converges
to (T ′i Ti)

−1T ′i Tix̄i = x̄i. �

PROOF (LEMMA 6) Let χ̃i = χi− χ̂i. Then

˙̃χi = (A +L )χ̃i− L̃iχ̃i−ΩεPεC
′(ζi− ζ̂i)

−ΩεPεC
′(ψi− ιi(C χ̂i +Diui)),

where L = [0,L′]′ and L̃i := L −Li. Note that

N

∑
j=1

gi jy j =
N

∑
j=1

gi j(y j− yr) =
N

∑
j=1

gi j(C χ j +D ju j).

Also, ζ̂i = ∑
N
j=1 gi j(C χ̂ j +D ju j) and ψi = ιiei = ιi(C χi +

Diui). It follows that

˙̃χi = (A +L )χ̃i− L̃iχ̃i−Ωε

(
N

∑
j=1

gi jPεC
′C χ̃ j + ιiPεC

′C χ̃i

)
,

or, after introducing the state transformation ξi = ε−1Ω−1
ε χ̃i,

εξ̇i = (A +Lε)ξi− L̃iε ξi−

(
N

∑
j=1

gi jPεC
′C ξ j + ιiPεC

′C ξi

)
,

where L̃iε is defined in the same way as in the proof
of Lemma 4. Defining ξ = [ξ ′1, . . . ,ξ

′
N ]
′ and L̃ε =

blkdiag(L̃1ε , . . . ,L̃Nε), the overall dynamics becomes

εξ̇ = (IN⊗ (A +Lε)− Ḡ⊗ (PεC
′C )− L̃ε)ξ .

The proof can now be completed in the same way as the
proof of Lemma 4. �

B A Useful Lemma

We here give a slightly extended version of Li et al. (2010,
Lemma 5).

Lemma 7 Suppose that G is a weighted digraph with N
nodes, and suppose that I ⊂ {1, . . . ,N} represents a subset
of nodes such that every node of G is a member of a directed
tree with its root contained in I . 4 Let G be the Laplacian
of G and let D = diag(d1, . . . ,dN) be a diagonal matrix with
non-negative elements. If for each i ∈ I , di > 0, then all
the eigenvalues of Ḡ := G+D are in the open right-half
complex plane.

PROOF Let Ĝ denote an expanded digraph constructed from
G by adding a node 0 and edges from node 0 to node i ∈
{1, . . . ,N} with weigth di, whenever di > 0. Then the Lapla-
cian of Ĝ is given by Ĝ =

[ 0 0
−d Ḡ

]
, where d = [d1, . . . ,dN ]

′.
Since Ĝ contains edges from 0 to every node in I , it con-
tains a directed spanning tree rooted at node 0. Hence, from
Ren and Beard (2005, Lemma 3.3), Ĝ has a simple eigen-
value at the origin, and all the other eigenvalues are in the
open right-half complex plane. Due to the block-triangular
form of Ĝ, its eigenvalues consist of the zero element (1,1)
and the eigenvalues of Ḡ. It therefore follows that the eigen-
values of Ḡ must be in the open right-half complex plane.�

C Auxiliary Model for (AK ,CK)

Suppose that the model ẋK = AKxK , yK =CKxK contains un-
observable or asymptotically stable modes. We show here
how to construct an observable auxiliary model without
asymptotically stable modes, whose output converges to that
of the original model. Let Γ1 be a nonsingular matrix such
that the state transformation Γ1zK = xK yields the stability
structural decomposition (Chen, Lin, and Shamash, 2004)[

żK1

żK2

]
=

[
Â11 0

0 Â22

][
zK1

zK2

]
, yK =

[
Ĉ1 Ĉ2

][zK1

zK2

]
,

where Â11 has all its eigenvalues in the closed right-half
complex plane and Â22 has all its eigenvalues in the open
left-half complex plane. Since zK2 vanishes asymptotically,
the system żK1 = Â11zK1, yK1 = Ĉ1zK1 has the property that
limt→∞(yK1−yK) = 0 for zK1(0) = [I,0]Γ−1

1 xK(0). Next, let
Γ2 be a nonsingular matrix such that the state transformation
Γ2qK = zK1 yields the Kalman observable canonical form:[

q̇K1

q̇K2

]
=

[
Ã11 Ã12

0 Ã22

][
qK1

qK2

]
, yK1 =

[
0 C̃2

][qK1

qK2

]
.

The reduced-order system q̇K2 = Ã22qK2, yK1 = C̃2qK2 is
clearly observable and yields the same output for qK2(0) =
[0, I]Γ−1

2 zK1(0).

4 A special case is when I consists of a single element corre-
sponding to the root of a directed spanning tree of G .
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D Proof of Column Rank of Λiu and Φiu

In this section we demonstrate that the matrices Λiu and Φiu
must have full column rank. For the sake of establishing a
contradiction, suppose that one of the matrices, say Λiu, has
linearly dependent columns. Then there are nonzero vectors
z ∈ Rqi and z̄ ∈ RnK such that

[
Λiu

Φiu

]
z =

[
0

z̄

]
=⇒ Oi

[
0

z̄

]
= 0 =⇒


CK

...

CKAnK−1
K

 z̄ = 0.

The last statement implies that (AK ,CK) is unobservable,
thus establishing the contradiction.
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